Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕРМЕХ.docx
Скачиваний:
29
Добавлен:
28.04.2019
Размер:
779.56 Кб
Скачать

62. Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела.

63. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси. Экспериментальное определение моментов инерции твердого тела.

Дифф-ные ур-ния вращения твердого тела вокруг неподвижной оси:

Jz – момент инерции тела относительно оси вращения z, – момент внешних сил относительно оси вращения (вращающий момент). , e – угловое ускорение, чем больше момент инерции при данном , тем меньше ускорение, т.е момент инерции при вращательном движении является аналогом массы при поступательном. Зная , можно найти закон вращения тела j=f(t), и, наоборот, зная j=f(t), можно найти момент. Частные случаи: 1) если = 0, то w = const – тело вращается равномерно; 2) = const, то e = const – вращение равнопеременное. Уравнение аналогичное дифф-ному уравнению прямолинейного движения точки .

64. Дифференциальные уравнения плоского движения твердого тела.

; ; , С – центр масс тела, JC – момент инерции тела относительно оси, перпендикулярной плоскости движения тела и проходящей через его центр масс.

65. Понятия о гироскопах. Основные свойства гироскопов.

Гироско́п (от др.-греч. γῦρος «круг» и σκοπέω «смотрю») — устройство, способное реагировать на изменение углов ориентации связанного с ним тела относительно инерциальной системы координат, как правило, основанное на законе сохранения вращательного момента (момента импульса). Термин впервые введен Жаном (Бернаром Леоном) Фуко в его докладе в 1852 году Французской Академии Наук. Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве. Этим обусловлено и название «гироскоп».

При воздействии момента внешней силы вокруг оси, перпендикулярной оси вращения ротора, гироскоп начинает поворачиваться вокруг оси прецессии, которая перпендикулярна моменту внешних сил.

Например, если позволить оси гироскопа двигаться только в горизонтальной плоскости, то ось стремится установиться по меридиану, при том так, что вращение прибора происходит так же, как и вращение Земли. Если же оси позволить двигаться вертикально (в плоскости меридиана), то она стремится установиться параллельно оси земли. Именно это замечательное свойство гироскопа и определило широкое применение прибора.

Данное свойство напрямую связано с возникновением так называемой кориолисовой силы. Так, при воздействии момента внешней силы гироскоп поначалу будет вращаться именно в направлении действия внешнего момента (нутационный бросок). Каждая частица гироскопа будет таким образом двигаться с переносной угловой скоростью вращения из-за момента. Но роторный гироскоп, помимо этого, и сам вращается, значит, каждая частица будет иметь относительную скорость. Следовательно, возникнет кориолисова сила, которая будет заставлять гироскоп двигаться в перпендикулярном приложенному моменту направлении, то есть прецессировать. Прецессия вызовет кориолисову силу, момент которой скомпенсирует момент внешней силы.

Гироскопический эффект вращающихся тел есть проявление коренного свойства материи — её инертности.

Упрощённо, поведение гироскопа описывается уравнением:

где векторы и являются, соответственно, моментом силы, действующей на гироскоп, и его моментом импульса, скаляр — его моментом инерции, векторы и угловой скоростью и угловым ускорением.