
- •1)Предмет и место теоретической механики среди общеинженерных с специальных дисциплин:
- •2)Теоретическая механика как наука о наиболее общих законах механического движения материальных объектов.
- •3)Структура курса теоретической механики: статика, кинематика, динамика.
- •4)Кинематика, как раздел теоретической механики, изучающий движение материальных объектов с чисто геометрической точки зрения.
- •5)Кинематика точки. Основные задачи кинематики материальной точки.
- •6)Способы задания движения материальной точки в векторной, координатной и естественной формах. Уравнения (законы) движения точки.
- •7)Определение траектории движения точки по ее уравнениям движения в координатной форме. Связь между векторным, координатным и естественным способами задания движения точки.
- •10) Естественный (натуральный) трехгранник, вектор ускорения точки при естественном способе задания ее движения. Касательное и нормальное ускорение точки.
- •11)Равномерное и равнопеременное движение точки. Уравнения этих движений.
- •12)Сложное (составное)движение точки. Абсолютное, переносное и относительное движение точки.
- •13)Определение вектора абсолютной скорости точки при сложном движении.
- •14)Определение вектора абсолютного ускорения точки при сложном движении.
- •15)Кинематика твердого тела. Основные задачи кинематики твердого тела.
- •16)Поступательное движение твердого тела. Скорости и ускорения точек твердого тела при его поступательном движении.
- •17)Вращение твердого тела вокруг неподвижной оси. Уравнение вращения. Векторы угловой скорости и углового ускорения.
- •18)Равномерное и равнопеременное вращение твердого тела вокруг неподвижной оси. Законы этих вращений.
- •19)Скорости отдельных точек твердого тела при его вращении вокруг неподвижной оси. Передаточные отношения механических передач. Скорости и ускорения точек вращающегося тела.
- •20)Ускорение отдельных точек тела при его вращении вокруг неподвижной оси.
- •21)Плоскопараллельное движение твердого тела и движение плоской фигуры в своей плоскости. Уравнение (закон) плоского движения.
- •22)Угловая скорость и угловое ускорение твердого тела при плоском движении. Независимость угловой скорости и углового ускорения от выбора полюса.
- •23)Вектор скорости отдельных точек твердого тела при плоском движении.
- •24)Определение векторов скоростей отдельных точек твердого тела при плоском движении с помощью мгновенного центра скоростей. Мгновенный центр вращения.
- •25)Теорема о проекции векторов двух точек твердого тела при плоском движении на прямую, соединяющие эти точки.
- •26)Вектор ускорения отдельных точек твердого тела при плоском движении. Мгновенный центр ускорений.
- •31. Векторы угловой скорости и углового ускорения свободного твердого тела.
- •32. Вектор скорости и ускорения отдельных точек свободного твердого тела.
- •33. Сложное (составное ) движение твердого тела. Сложение поступательных движений.
- •34. Сложение вращений твердого тела вокруг параллельных пересекающихся осей.
- •35. Пара вращений. Дифференциальные и планетарные механизмы.
- •36. Динамика как раздел теоретической механики.
- •37. Структура раздела динамики: динамика точки, системы материальных точек твердого тела, системы твердых сил.
- •38. Второй закон Ньютона. Инерциальные системы отчета. Границы применимости законов динамики.
- •39. Две основные задачи динамики.
- •40. Динамика материальной точки. Дифференциальные уравнения движения точки в векторной, координатной и естественной форме.
- •41. Решение двух основных задач динамики материальной точки.
- •42. Прямолинейные колебательные движения материальной точки. Свободные колебания. Затухающие колебания.
- •43. Вынужденные прямолинейные колебания материальной точки. Резонанс.
- •44. Несвободное движение точки. Связи, налагаемые на движение точки и их классификация.
- •47. Относительное движение материальной точки.
- •48. Динамика системы материальных точек, масса системы. Силы внутренние и внешние.
- •49. Влияние распределения массы системы материальных точек на её движения. Характеристики распределения масс системы материальных точек
- •50.Цент масс системы материальных точек. Моменты инерции системы.
- •51. Тензор инерции. Главные оси и главные моменты инерции.
- •52. Общие теоремы динамики и их назначение.
- •53. Вектор количества движения материальной точки.
- •54. Теорема об изменении вектора количества движении системы материальных точек и точки. Законы сохранения вектора кол-ва движения.
- •55. Движение тел переменной массы. Уравнение Мещерского.
- •56. Вектор момента количества движений материальной точки и системы материальных точек.
- •57. Теорема об изменении вектора момента количества движения материальной системы и точки.
- •58. Работа силы. Мощность.
- •59. Кинетическая энергия материальной точки. Кинетическая энергия твердого тела в различных случаях его движения.
- •60. Теоремы об изменении кинетической энергии материальной точки.
- •61. Силовое потенциальное поле. Потенциальная энергия. Закон сохранения механической энергии.
- •62. Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела.
- •63. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси. Экспериментальное определение моментов инерции твердого тела.
- •64. Дифференциальные уравнения плоского движения твердого тела.
- •65. Понятия о гироскопах. Основные свойства гироскопов.
- •69. Явление удара. Прямой центральный удар. Действие ударных сил на твердое тело, вращающее вокруг неподвижной оси.
49. Влияние распределения массы системы материальных точек на её движения. Характеристики распределения масс системы материальных точек
50.Цент масс системы материальных точек. Моменты инерции системы.
Центром
масс (или центром инерции) системы
материальных точек называется воображаемая
точка С, положение которой характеризует
распределение массы этой системы. Ее
радиус-вектор равен
Где
и
- соответственно масса и радиус-вектор
итой-й материальной точки; n-
число материальных точек в системе;
- масса системы.
51. Тензор инерции. Главные оси и главные моменты инерции.
Тензор инерции — в механике абсолютно твёрдого тела — величина, связывающая момент импульса тела и кинетическую энергию его вращения с его угловой скоростью:
,
где
— тензор инерции,
— угловая скорость,
— момент импульса.
Оси, относительно которых центробежный момент инерции сечения обращается в нуль, называются главными осями, а главные оси, проходящие через центр тяжести сечения - главными центральными осями инерции сечения. Моменты инерции относительно главных осей инерции сечения называются главными моментами инерции сечения и обозначаются через I1 и I2 причем I1>I2. Обычно, говоря о главных моментах, подразумевают осевые моменты инерции относительно главных центральных осей инерции.
52. Общие теоремы динамики и их назначение.
ТЕОРЕМА КОЛИЧЕСТВА ДВИЖЕНИЯ (в дифференциальной форме).
1.
Для точки: производная от количества
движения точки по времени равна
равнодействующей приложенных к точке
сил
:
ТЕОРЕМА ИМПУЛЬСОВ (теорема количества движения в конечной форме).
1. Для точки: изменение количества движения точки за конечный промежуток времени равно сумме импульсов, приложенных к точке сил (или импульсу равнодействующей приложенных к точке сил)
53. Вектор количества движения материальной точки.
54. Теорема об изменении вектора количества движении системы материальных точек и точки. Законы сохранения вектора кол-ва движения.
Теорема об изменении количества движения матер. точки. – количество движения материальной точки, – элементарный импульс силы. – элементарное изменение количества движения материальной точки равно элементарному импульсу силы, приложенной к этой точке (теорема в дифференц-ной форме) или – производная по времени от количества движения материальной точки равна равнодействующей сил, приложенных к этой точке. Проинтегрируем: – изменение количества движения материальной точки за конечный промежуток времени равно элементарному импульсу силы, приложенной к этой точке, за тот же промежуток времени. – импульс силы за промежуток времени [0,t]. В проекциях на оси координат: и т.д.
55. Движение тел переменной массы. Уравнение Мещерского.
Уравнение
Мещерского — основное уравнение в
механике тел переменной массы, полученное
Иваном Мещерским в 1904 году. Оно имеет
вид:
где:
m — переменная масса тела;
v — скорость движения тела переменной массы;
F — внешние силы (сопротивление среды и т. п.);
— относительная
скорость отделяющихся частиц;
— относительная
скорость присоединяющихся частиц;
— секундный
расход массы;
— секундный
приход массы.