
- •1)Предмет и место теоретической механики среди общеинженерных с специальных дисциплин:
- •2)Теоретическая механика как наука о наиболее общих законах механического движения материальных объектов.
- •3)Структура курса теоретической механики: статика, кинематика, динамика.
- •4)Кинематика, как раздел теоретической механики, изучающий движение материальных объектов с чисто геометрической точки зрения.
- •5)Кинематика точки. Основные задачи кинематики материальной точки.
- •6)Способы задания движения материальной точки в векторной, координатной и естественной формах. Уравнения (законы) движения точки.
- •7)Определение траектории движения точки по ее уравнениям движения в координатной форме. Связь между векторным, координатным и естественным способами задания движения точки.
- •10) Естественный (натуральный) трехгранник, вектор ускорения точки при естественном способе задания ее движения. Касательное и нормальное ускорение точки.
- •11)Равномерное и равнопеременное движение точки. Уравнения этих движений.
- •12)Сложное (составное)движение точки. Абсолютное, переносное и относительное движение точки.
- •13)Определение вектора абсолютной скорости точки при сложном движении.
- •14)Определение вектора абсолютного ускорения точки при сложном движении.
- •15)Кинематика твердого тела. Основные задачи кинематики твердого тела.
- •16)Поступательное движение твердого тела. Скорости и ускорения точек твердого тела при его поступательном движении.
- •17)Вращение твердого тела вокруг неподвижной оси. Уравнение вращения. Векторы угловой скорости и углового ускорения.
- •18)Равномерное и равнопеременное вращение твердого тела вокруг неподвижной оси. Законы этих вращений.
- •19)Скорости отдельных точек твердого тела при его вращении вокруг неподвижной оси. Передаточные отношения механических передач. Скорости и ускорения точек вращающегося тела.
- •20)Ускорение отдельных точек тела при его вращении вокруг неподвижной оси.
- •21)Плоскопараллельное движение твердого тела и движение плоской фигуры в своей плоскости. Уравнение (закон) плоского движения.
- •22)Угловая скорость и угловое ускорение твердого тела при плоском движении. Независимость угловой скорости и углового ускорения от выбора полюса.
- •23)Вектор скорости отдельных точек твердого тела при плоском движении.
- •24)Определение векторов скоростей отдельных точек твердого тела при плоском движении с помощью мгновенного центра скоростей. Мгновенный центр вращения.
- •25)Теорема о проекции векторов двух точек твердого тела при плоском движении на прямую, соединяющие эти точки.
- •26)Вектор ускорения отдельных точек твердого тела при плоском движении. Мгновенный центр ускорений.
- •31. Векторы угловой скорости и углового ускорения свободного твердого тела.
- •32. Вектор скорости и ускорения отдельных точек свободного твердого тела.
- •33. Сложное (составное ) движение твердого тела. Сложение поступательных движений.
- •34. Сложение вращений твердого тела вокруг параллельных пересекающихся осей.
- •35. Пара вращений. Дифференциальные и планетарные механизмы.
- •36. Динамика как раздел теоретической механики.
- •37. Структура раздела динамики: динамика точки, системы материальных точек твердого тела, системы твердых сил.
- •38. Второй закон Ньютона. Инерциальные системы отчета. Границы применимости законов динамики.
- •39. Две основные задачи динамики.
- •40. Динамика материальной точки. Дифференциальные уравнения движения точки в векторной, координатной и естественной форме.
- •41. Решение двух основных задач динамики материальной точки.
- •42. Прямолинейные колебательные движения материальной точки. Свободные колебания. Затухающие колебания.
- •43. Вынужденные прямолинейные колебания материальной точки. Резонанс.
- •44. Несвободное движение точки. Связи, налагаемые на движение точки и их классификация.
- •47. Относительное движение материальной точки.
- •48. Динамика системы материальных точек, масса системы. Силы внутренние и внешние.
- •49. Влияние распределения массы системы материальных точек на её движения. Характеристики распределения масс системы материальных точек
- •50.Цент масс системы материальных точек. Моменты инерции системы.
- •51. Тензор инерции. Главные оси и главные моменты инерции.
- •52. Общие теоремы динамики и их назначение.
- •53. Вектор количества движения материальной точки.
- •54. Теорема об изменении вектора количества движении системы материальных точек и точки. Законы сохранения вектора кол-ва движения.
- •55. Движение тел переменной массы. Уравнение Мещерского.
- •56. Вектор момента количества движений материальной точки и системы материальных точек.
- •57. Теорема об изменении вектора момента количества движения материальной системы и точки.
- •58. Работа силы. Мощность.
- •59. Кинетическая энергия материальной точки. Кинетическая энергия твердого тела в различных случаях его движения.
- •60. Теоремы об изменении кинетической энергии материальной точки.
- •61. Силовое потенциальное поле. Потенциальная энергия. Закон сохранения механической энергии.
- •62. Динамика твердого тела. Дифференциальные уравнения поступательного движения твердого тела.
- •63. Дифференциальные уравнения вращения твердого тела вокруг неподвижной оси. Экспериментальное определение моментов инерции твердого тела.
- •64. Дифференциальные уравнения плоского движения твердого тела.
- •65. Понятия о гироскопах. Основные свойства гироскопов.
- •69. Явление удара. Прямой центральный удар. Действие ударных сил на твердое тело, вращающее вокруг неподвижной оси.
35. Пара вращений. Дифференциальные и планетарные механизмы.
Пара вращений аналогична паре сил, действующей на твердое тело. Угловые скорости вращения тела, аналогично силам, являются векторами скользящими. Векторный момент пары сил является вектором свободным. Аналогичным свойством обладает и векторный момент пары вращений.
Планетарным называется дифференциальный механизм, если в нем одно из звеньев неподвижно. Планетарные механизмы используются:
1) в планетарных редукторах;
2) в планетарных механизмах включения и выключения;
3) в планетарных реверсивных механизмах;
4) в планетарных коробках передач;
5) в планетарных вариаторах, обеспечивающих бесступенчатое изменение величины передаточного отношения в больших пределах. Все эти механизмы надежны и легко управляемы, создают широкие возможности для их использования.
36. Динамика как раздел теоретической механики.
Динамика – раздел теоретической механики, изучающий движение материальных объектов и причины его вызывающие. Движение тела считается известным, если известно движение каждой его точки; поэтому изучение динамики начинается с изучения движения материальной точки. Под материальной точкой понимают тело, размеры которого таковы, что различием в перемещениях отдельных его частиц можно пренебречь. Материальную точку можно рассматривать как геометрическую точку, имеющую конечную массу. Законы Галилея - Ньютона Закон инерции. Изолированная материальная точка движется с нулевым ускорением. Первый закон указывает на одно из важнейших свойств материи – инертность. Свойство инертности проявляется в способности тела сохранять свое движение при отсутствии внешних воздействий, а также изменять его под действием сил не мгновенно, а постепенно. Это изменение происходит тем медленнее, чем больше вещества содержится в теле. Величина, являющаяся мерой инертности тела и определяющая количество вещества, содержащегося в теле, называется инертной массой тела. Основной закон динамики. Модуль силы, действующий на материальную точку, равен произведению массы точки на модуль ее ускорения, а направление силы совпадает с направлением ускорения.
37. Структура раздела динамики: динамика точки, системы материальных точек твердого тела, системы твердых сил.
38. Второй закон Ньютона. Инерциальные системы отчета. Границы применимости законов динамики.
Второй закон Ньютона: производная по времени от количества движения материальной точки геометрически равна силе, приложенной к точке. Или, при постоянной массе, произведение массы точки на её абсолютное ускорение геометрически равно приложенной к материальной точке силе, т. е.
или
, если m = const.
F=m*a
Связь кинематической величины – ускорения с динамической величиной – силой через коэффициент пропорциональности – массу.
Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся. Эквивалентной является следующая формулировка, удобная для использования в теоретической механике.