
- •Билет №40
- •Технологии предупреждения образования солеотложений при эксплуатации скважин.
- •2.Основные методы разрушения эмульсий.
- •3.Технологии выработки остаточных запасов нефти.
- •Билет №41
- •Назначение мини-грп
- •Технологии применения пав в качестве деэмульгаторов.
- •3.Задачи геофизических методов контроля за разработкой нефтяных месторождений
- •Билет №42
- •Этапы проведения грп.
- •Внутритрубная деэмульсация нефти.
- •Технологии разработки месторождений при анпд и авпд.
- •Билет №43
- •Классификация плунжерных глубинных насосов.
- •Принципиальная схема гравитационного осаждения.
- •Методы контроля за разработкой нефтяных месторождений.
- •Основные способы заканчивания скважин.
- •Установка термической подготовки нефти.
- •Особенности разработки месторождений высоковязких нефтей.
Билет №43
Классификация плунжерных глубинных насосов.
Насосы разделяются на невставные или трубные и вставные. Основные особенности их состоят в следующем.
Невставные насосы. Цилиндр спускается в скважину на насосных трубах без плунжера. Плунжер спускается отдельно на насосных штангах. Плунжер вводится в цилиндр вместе с подвешенным к плунжеру всасывающим клапаном. Чтобы плунжер
Рис. 10.2. Принципиальная схема скважинных штанговых насосов:
а - невставной насос с штоком типа НГН-1; б - невставной насос с ловителем типа НГН-2;
1 - нагнетательные клапаны, 2 - цилиндры, 3 - плунжеры; 4 - патрубки-удлинители, 5 - всасывающие клапаны, 6 - седла конусов, 7 - захватный шток, 8 - второй нагнетательный клапан, 9 - ловитель, 10 - наконечник для захвата клапана; в - вставной насос типа НГВ-1: 1 - штанга, 2 - НКТ, 3 - посадочный конус, 4 - замковая опора, 5 - цилиндр, 6 - плунжер, 7 - направляющая трубка
довести до цилиндра насоса без повреждений через трубы, последние должны иметь внутренний диаметр больше наружного диаметра плунжера (примерно на 6 мм). Для извлечения невставного насоса в случае замены или ремонта необходимо сначала извлечь штанги с висящим на их конце плунжером, а затем насосные трубы с висящим на их конце цилиндром насоса.
Вставные насосы. Цилиндр в сборе с плунжером и клапанами спускается на штангах. В этом случае на конце насосных труб заранее устанавливается специальное посадочное устройство - замковая опора, на которой происходит посадка и уплотнение насоса. Для извлечения вставного насоса в случае ремонта достаточно извлечь только штанги, вместе с которыми извлекается весь насос.
Поскольку при вставном насосе через трубы данного диаметра пропускается не только плунжер, но и цилиндр вместе с кожухом, то диаметр плунжера вставного насоса должен быть намного меньше диаметра трубного. Поэтому подача вставного насоса при трубах данного диаметра всегда меньше подачи невставного.
Принципиальная схема гравитационного осаждения.
Рассмотрим на примере:Горизонтальный сепаратор. На рис. приведены общий вид и разрез горизонтального сепаратора, в котором частицы жидкости оседают под действием как гравитационных, так и инерционных сил. Этот сепаратор работает следующим образом.
Рис.. Общий вид и разрез горизонтального сепаратора: 1 – ввод газонефтяной смеси; 2 – диспергатор; 3 – наклонные плоскости; 4 – жалюзийная насадка-каплеуловитель; 5 – перегородка для выравнивания потока газа; 6 – выход газа; 7 – люк; 8 – регулятор уровня; 9 – поплавковый уровнедержатель; 10 – сброс грязи; 11 – перегородка для предотвращения прорыва газа; 12 – сливная трубка
Нефтегазовая смесь, подаваемая в патрубок 1, вначале попадает в диспергатор газа 2, где происходит дробление (диспергирование) нефтегазовой смеси. Диспергирование нефти приводит к существенному увеличению поверхности контакта нефть-газ, в результате чего происходит интенсивное выделение газа из нефти. Однако глубокое отделение газа от нефти получается в том случае, когда выделившийся в трубопроводе газ отделяется от нефти до подхода к сепаратору. После диспергатора из газа под действием гравитационных сил значительная часть капельной нефти оседает на наклонные плоскости 3, а незначительная часть ее в виде мельчайших капелек уносится основным потоком газа. Для изменения структуры потока наклонные плоскости следует выполнять с уступами (порогами), способствующими выделению газа из жидкости.
Основной поток газа вместе с мельчайшими частицами нефти, не успевшими осесть под действием силы тяжести, встречает на своем пути жалюзийную насадку 4, в которой происходят "захват" (прилипание) капелек жидкости и дополнительное отделение их от газа; при этом образуется пленка, стекающая в поддон, из которого по трубе 12 она попадает под уровень жидкости, в сепараторе.
На рис.3.7. в верхней части сепаратора показана в увеличенном размере капелька К и действующие на нее силы, а в нижней части сепаратора – увеличенный пузырек газа П и также силы, действующие на него.
Осаждение частиц жидкости в гравитационном сепараторе происходит в основном по двум причинам.
1- Резкое снижение скорости газового потока.
2- разность плотностей газовой и жидкой фазы
Для эффективной сепарации необходимо, чтобы скорость движения газового потока была меньше скорости осаждения
ωг<ωчастиц
При расчете принимаются следующие допущения
1- Частица жидкости имеет форму шара на который действуют две силы
R
mg
2- На движение частицы не оказывает влияние другие частицы
3-Сила сопротивления уравновешивает силу тяжести и частица движется с постоянной скоростью осаждения
Режим движения частицы
1- Re < 2 –Ламинарный режим осаждения Сам эффективный режим
ωч= |
dч2(ρч-ρс)g |
18μc |