
- •1. Электрический заряд и его св-ва.З-н сох-ния электричеч. Заряда.З-н Кулона.Диэлектрическа проницаенмость и ее физический смысл.
- •2.Электростатическое поле. Напряженность поля.Поле точечного заряда.
- •3.Энергетическая хар-ка электростатич-го поля-потенциал. Потенциал поля точесного заряда и системы зарядов. Связь между напряженностью электрич.-го поля и потенциалом.
- •4.Работа сил электрического поля по перемещению зарядов. Циркуляция вектора напряженности. Потенциальный характер электрического поля.
- •5.Поток вектора напряженности электрического поля. Теорема Гаусса. Выч-ие напряж-ти поля заряженных сферы и шара с помощью теоремы Гаусса.
- •7.Поляризация диэтриков. Вектор поляризации.Электрический момент диполя.Полярные и неполярные молеулы.
- •Виды диэлектриков. Механизмы поляризации
- •Виды диэлектриков. Механизмы поляризации
- •3. Сегнетоэлектрики
- •9.Проводники в электрическом поле.Элеростатическая защита.Электороемкость проводников.Конденсаторы.Соедения конденсаторов
- •1. Проводники в электростатическом поле
- •2. Электроемкость заряженного проводника. Конденсаторы
- •10.Энергия заряженного проводника.Энергия заряженного конденсатора.Энергия электростатического поля.Обьемная плотноть энергии.
- •12.Основные характеристики электрической цепи:разность потенциалов, электродвижущая сила, напряжение, сопротивление. Зависимость сопротивления от температуры.Сверхпроводимость.
- •13.Законы Ома для участков цепи.Соединение сопротивлений и эдс.
- •14.Работа,мощность и тепловое действие постоянного тока.Закон Джоуля-Ленца.
- •4.3. Соединения сопротивлений
- •15.Разветление цепи.Правило Кирхгофа и их физическое содержание.
- •Правила Кирхгофа для разветвленных цепей
- •16.Работа выхода электронов из металла.Контактная разность потенциаллов.Зконы Вольта.
- •Законы Вольты
- •17.Термоэлектрический эффект.Явление Пельтье.Применение контактных явлений .
- •18.Магнитное поле и его характеристики:магнитная индукция в и напряженность н. Закон Био-Савара-Лапласа.
- •19.Применение закона Био-Савара-Лапласа к расчету магнитных полей токов. Поле прямолинейного и круового проводников с токой.
- •Поле движущегося заряда
- •20.Действие магнитного поля на проводник с током.Сила Ампера. Взаимодествие параллельных токов.Еденица силы тока в си-ампер.
- •21.Действие магнитного поля на движущийся заряд. Сила Лоренца. Эффект Холла.Циклотрон.
- •3. Действие магнитного поля на движущийся заряд. Сила Лоренца
- •22.Циркуляция вектора индукции магнитного поля. Закон полного тока. Магнитное поле солиноида.
- •23.Магнитный поток.Работа перемещения проводника и контура с током в магнитном поле.
- •Работа по перемещению проводника с током в магнитном поле
- •24.Явление элктромагнитной индукции.Эдс индукции.Закон Фарадея. Правило Ленца. Практическая значимость явления электромагнитной индукции.
- •25.Явление самоиндукции.Эдс самоиндукции, индуктивность контура. Экстратоки замыкания и размыкаия.
- •Пример. Рассчитать индуктивность длинного соленоида, имеющего n витков, площадь сечения s и длину l.
- •Индуктивность соленоида пропорциональна квадрату числа витков на единицу его длины, объему соленоида и магнитной проницаемости вещества сердечника соленоида.
- •Из аналогии следует физический смысл индуктивности: индуктивность контура является мерой инертности контура по отношению к изменению тока в контуре.
- •26.Взаимоиндукция.Эдс взаимоиндуции.Трансформаторы.
- •Решение уравнения свободных гармонических колебаний (1):
- •32.Переменный ток и его получение. Активное и реактивное сопротивление цепи. Мощность, выделяемого в цепи переменнного тока.
- •33.Токи смещения.Вихревое электрическое поле.Система уравнений Максвелла в интегральной форме.
- •Система уравнений эмп в безындукционном приближении
- •34.Уравнение плоской электромагнитной волны. Скорость распространения электромагнитных волн в средах.
- •35.Энергия электромагнитной волны.Вектор Умова-Пойнтинга. Эксперементальное исследование электроманитных волн. Шкала электромагнитных волн. Открытие радиосвязи а.С.Поповым.
35.Энергия электромагнитной волны.Вектор Умова-Пойнтинга. Эксперементальное исследование электроманитных волн. Шкала электромагнитных волн. Открытие радиосвязи а.С.Поповым.
Электромагнитные волны переносят энергию. Суммарная плотность энергии электрического и магнитного (электромагнитного) поля
,
.
В электромагнитных волнах происходят взаимные превращения электрического и магнитного поля. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.
Отсюда
следует, что в электромагнитной волне
модули напряженности магнитного поля
и
напряженности электрического поля
в
каждой точке пространства связаны
соотношением
.
При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия Wэм,
Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:
(10)
Умножив
плотность энергии электромагнитного
поля
на
скорость распространения волны в среде
(3), получим вектор
плотности потока электромагнитной
энергии (вектор
Умова-Пойнтинга)
,
Вт/м2
Электромагнитные волны оказывают давление. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. (давление солнечного излучения 5 мкПа). П.Н. Лебедев (1899 г.) доказал существование светового давления, что подтверждает теорию Максвелла.
Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля
.
По определению импульса
.
Это соотношение, связывающее массу и энергию, является универсальным законом природы.
Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроволочной связи (А. С. Попов, 1895 г.).