- •Вопросы по курсу «Организация эвм и систем»
- •1. Общая структура эвм. Назначение основных блоков. Взаимодействие программного и аппаратного обеспечения эвм.
- •2. Основные характеристики эвм.
- •3. Назначение и структура процессора. Назначение и взаимодействие основных блоков.
- •4. Классификация процессоров.
- •1. По числу бис в микропроцессорном комплекте:
- •6. По количеству выполняемых программ :
- •5. Организация управления процессом обработки информации в процессоре: управляющие автоматы с “жесткой” и с хранимой в памяти логикой.
- •6. Типы структур команд. Способ расширения кодов операций.
- •7. Общая структура команды. Способы адресации операндов.
- •8. Типы архитектур мп. Ортогональность архитектуры мп.
- •9. Cisc и risc архитектуры мп. Особенности risc архитектуры.
- •Синхронный конвейер операций. Принцип совмещения операций
- •11. Асинхронный конвейер операций и его особенности.
- •12. Система прерываний программ. Функции и назначение.
- •13. Характеристики системы прерываний.
- •14. Особенности суперскалярных микропроцессоров. Суперскалярные мп:
- •15. Организация памяти эвм. Статические и динамические озу.
- •16. Понятие виртуальной памяти. Страничная, сегментная и смешанного типа организация виртуальной памяти.
- •Сегментное распределение
- •Странично-сегментное распределение
- •18. Основные функциональные характеристики блоков кэш-памяти.
- •19. Сравнительная характеристика организации кэш–памяти прямого отображения, ассоциативной и наборно-ассоциативной.
- •20. Пример организации кэш в мп Pentium 4.
- •21. Новые типы динамической памяти: edram, cdram, sdram, rdram, sldram.
- •22. Методы защиты памяти: метод граничных регистров, метод ключей защиты, защита отдельных ячеек.
- •24. Понятие многопроцессорных систем. Классификация параллельных вычислительных систем.
- •24. Организация памяти вычислительных систем.
- •25. Система команд процессора: индексация и ее назначение. Особенности команд передачи управления и вызова подпрограмм.
- •26. Использование самоопределяемых данных. Понятие тегов и дескрипторов.
- •Сети эвм: понятие, становление, преимущества сетевой обработки данных.
- •Основные характеристики вычислительных сетей.
- •Классификация вычислительных сетей. Отличия классических lan и gan, тенденция их сближения.
- •1. По территориальной рассредоточенности
- •2. Масштаб предприятия или подразделения, кому принадлежит сеть
- •Типовые структуры вычислительных сетей.
- •Общая шина
- •Методы коммутации в вычислительных сетях. Способы мультиплексирования каналов связи.
- •2. Коммутация сообщений
- •3. Коммутация пакетов
- •Задачи системотехнического проектирования сетей эвм.
- •Структурная организация:
- •Анализ задержек передачи сообщений в сетях передачи данных.
- •Задача оптимального выбора пропускных способностей каналов связи (прямая и обратная постановки).
- •Семиуровневая модель взаимодействия открытых систем. Функции уровней.
- •Прохождение данных через уровни модели osi. Функции уровней.
- •Протоколы и функции канального уровня.
- •Протоколы повторной передачи.
- •Протоколы и функции сетевого уровня. Таблицы маршрутизации.
- •Классификация алгоритмов маршрутизации.
- •По способу выбора наилучшего маршрута
- •По способу построения таблиц маршрутизации
- •По месту выбора маршрутов (маршрутного решения)
- •Задача оптимальной статической маршрутизации.
- •Стек тср/ip. Протоколы прикладного уровня.
- •Системы адресации в стеке тср/ip.
- •Протокол ip.
- •Ip как протокол без установления соединения
- •Протокол tcp.
- •Технология X.25.
- •Технология isdn.
- •2) D канал
- •3) H канал
- •Технология Frame Relay.
- •Чистая и синхронная aloha.
- •Технология локальных сетей. Уровни llc и mac. Способы доступа.
- •Технология Ethernet.
- •Технология Token Ring.
- •2. Маркерный метод доступа к разделяемой среде
- •3. Форматы кадров Token Ring
- •1. Маркер
- •2. Кадр данных.
- •Технология fddi.
- •Анализ временных характеристик в локальных сетях.
- •Вопросы по курсу «Базы данных» Основные принципы построения баз данных, проблемы хранения больших объемов информации.
- •Уровни представления информации, понятие модели данных.
- •Основные типы субд.
- •Взаимодействие базы данных и прикладных программ.
- •Реляционная модель данных, основные понятия.
- •Теоретические основы реляционного исчисления, использование исчисления предикатов первого порядка.
- •Использование реляционной алгебры в реляционной модели данных.
- •Иерархический и сетевой подходы при построении баз данных, основные понятия, достоинства и недостатки.
- •Реляционные базы данных: достоинства и недостатки.
- •Основные компоненты субд и их взаимодействие. Типы и структуры данных.
- •Обработка данных в субд, основные методы доступа к данным, использование структуры данных типа «дерево».
- •Поиск информации в бд с использованием структуры типа «бинарное дерево».
- •Поиск информации в бд с использованием структуры типа «сильно ветвящееся дерево».
- •Методы хеширования для реализации доступа к данным по ключу.
- •Представление данных с помощью модели «сущность-связь», основные элементы модели.
- •Типы и характеристики связей сущностей
- •Построение диаграммы «сущность-связь» в различных нотациях.
- •Нотация Чена
- •Нотация Мартина
- •Нотация idef1x.
- •Нотация Баркера.
- •Проектирование реляционных баз данных, основные понятия, оценки текущего проекта бд.
- •Понятие ключа в базах данных, первичные и внешние ключи.
- •Нормализация в реляционных базах данных, понятие нормальной формы при проектировании баз данных.
- •1Нф: Основные определения и правила преобразования.
- •2Нф: Основные определения и правила преобразования.
- •3Нф: Основные определения и правила преобразования.
- •Нф Бойса-Кодда: Основные определения и правила преобразования.
- •4Нф: Основные определения и правила преобразования.
- •Ограничения целостности для реляционной базы данных.
13. Характеристики системы прерываний.
общее число запросов прерывания;
число запросов внешних прерываний;
время реакции - время межу появлением запроса прерывания и началом выполнения прерывающей;
Особенности:
Т.к. время реакции в общем случае зависит от приоритета запроса (т.к. в системе могут ожидать обслуживания запросы с более высоким приоритетом), то оно определяется для запроса с самым высоким приоритетом;
Время реакции может включать в себя t3 при аппаратной реализации запоминания состояния прерываемой программы;
Если реакция на прерывание (обычно) возможна только между выполнением отдельных команд программы, то на время реакции оказывает влияние время выполнения команд;
Применение МП выдвигает соответствующие требования на время реакции. Особенно высокие требования для систем, работающих в реальном режиме времени, когда обработка события должна происходить очень быстро.
Для снижения времени реакции используют:
возможность прерывания после каждого такта команды (редко, т.к. увеличивается число запоминающей информации);
запоминание только части информации о прерванной программе;
наличие ортогональных состояний МП.
затраты времени на переключение программ (учитываются все расходы времени на запоминание и восстановление состояния программы): tизд=tз+tв
глубина прерывания - максимальное число программ, которые могут прерывать друг друга.
Если после перехода к программе обработке прерывания и до ее окончания обработка запросов больше не возможна, то глубина равна 1. Чем больше глубина прерываний, тем быстрее реакция процессора на прерывания с более высоким приоритетом.
Если запрос прерывания окажется не обслуженным до прихода следующего запроса от того же источника, то наступает насыщение системы прерываний и запрос будет потерян. Для избегания этого необходимо согласовывать быстродействие МП с частотой запросов прерываний.
число уровней прерываний
Т.к. ЭВМ может иметь большое число источников прерываний, а их полная реализация в процессоре зачастую невозможна, все запросы делятся на классы (уровни).
Совокупность запросов прерывания, которые инициируют одну и туже программу обработки прерываний образуют уровень прерываний.
На этом принципе (объединения запросов в один класс) основан способ увеличения числа возможных источников запросов прерываний. В частности, например, если запросы от трех источников объединены в один уровень, то программа обработки прерывания по запросу от данного уровня должна в первую очередь определить источник прерывания и затем вызвать соответствующую подпрограмму.
14. Особенности суперскалярных микропроцессоров. Суперскалярные мп:
Данная архитектура обеспечивает одновременное выполнение двух и более команд. Для этой цели в МП реализовано несколько специальных или универсальных обрабатывающих устройств (конвейеров), которые могут работать параллельно. Управляющее устройство МП обеспечивает просмотр очереди команд на возможность одновременного выполнения нескольких команд и если такие команды найдены, обеспечивает загрузку ими исполнительных устройств. Т.о. функцию распараллеливания потока команд берет на себя аппаратура процессора (без вмешательства программиста).
При этом для увеличения загрузки исполнительных устройств необходимо:
устранение зависимостей по управлению (предсказание переходов)
устранение зависимостей по данным (переименование регистров)
Особенности архитектуры:
Достоинство:
программист не заботится о распараллеливании.
Недостатки:
распараллеливание происходит динамически (затрачивается процессорное. время);
распараллеливается только ограниченная часть программного кода (т.е. далеко расположенные друг от друга не связанные между собой команды одновременно не могут быть выполнены);
высокая сложность УУ.
