- •Вопросы по курсу «Организация эвм и систем»
- •1. Общая структура эвм. Назначение основных блоков. Взаимодействие программного и аппаратного обеспечения эвм.
- •2. Основные характеристики эвм.
- •3. Назначение и структура процессора. Назначение и взаимодействие основных блоков.
- •4. Классификация процессоров.
- •1. По числу бис в микропроцессорном комплекте:
- •6. По количеству выполняемых программ :
- •5. Организация управления процессом обработки информации в процессоре: управляющие автоматы с “жесткой” и с хранимой в памяти логикой.
- •6. Типы структур команд. Способ расширения кодов операций.
- •7. Общая структура команды. Способы адресации операндов.
- •8. Типы архитектур мп. Ортогональность архитектуры мп.
- •9. Cisc и risc архитектуры мп. Особенности risc архитектуры.
- •Синхронный конвейер операций. Принцип совмещения операций
- •11. Асинхронный конвейер операций и его особенности.
- •12. Система прерываний программ. Функции и назначение.
- •13. Характеристики системы прерываний.
- •14. Особенности суперскалярных микропроцессоров. Суперскалярные мп:
- •15. Организация памяти эвм. Статические и динамические озу.
- •16. Понятие виртуальной памяти. Страничная, сегментная и смешанного типа организация виртуальной памяти.
- •Сегментное распределение
- •Странично-сегментное распределение
- •18. Основные функциональные характеристики блоков кэш-памяти.
- •19. Сравнительная характеристика организации кэш–памяти прямого отображения, ассоциативной и наборно-ассоциативной.
- •20. Пример организации кэш в мп Pentium 4.
- •21. Новые типы динамической памяти: edram, cdram, sdram, rdram, sldram.
- •22. Методы защиты памяти: метод граничных регистров, метод ключей защиты, защита отдельных ячеек.
- •24. Понятие многопроцессорных систем. Классификация параллельных вычислительных систем.
- •24. Организация памяти вычислительных систем.
- •25. Система команд процессора: индексация и ее назначение. Особенности команд передачи управления и вызова подпрограмм.
- •26. Использование самоопределяемых данных. Понятие тегов и дескрипторов.
- •Сети эвм: понятие, становление, преимущества сетевой обработки данных.
- •Основные характеристики вычислительных сетей.
- •Классификация вычислительных сетей. Отличия классических lan и gan, тенденция их сближения.
- •1. По территориальной рассредоточенности
- •2. Масштаб предприятия или подразделения, кому принадлежит сеть
- •Типовые структуры вычислительных сетей.
- •Общая шина
- •Методы коммутации в вычислительных сетях. Способы мультиплексирования каналов связи.
- •2. Коммутация сообщений
- •3. Коммутация пакетов
- •Задачи системотехнического проектирования сетей эвм.
- •Структурная организация:
- •Анализ задержек передачи сообщений в сетях передачи данных.
- •Задача оптимального выбора пропускных способностей каналов связи (прямая и обратная постановки).
- •Семиуровневая модель взаимодействия открытых систем. Функции уровней.
- •Прохождение данных через уровни модели osi. Функции уровней.
- •Протоколы и функции канального уровня.
- •Протоколы повторной передачи.
- •Протоколы и функции сетевого уровня. Таблицы маршрутизации.
- •Классификация алгоритмов маршрутизации.
- •По способу выбора наилучшего маршрута
- •По способу построения таблиц маршрутизации
- •По месту выбора маршрутов (маршрутного решения)
- •Задача оптимальной статической маршрутизации.
- •Стек тср/ip. Протоколы прикладного уровня.
- •Системы адресации в стеке тср/ip.
- •Протокол ip.
- •Ip как протокол без установления соединения
- •Протокол tcp.
- •Технология X.25.
- •Технология isdn.
- •2) D канал
- •3) H канал
- •Технология Frame Relay.
- •Чистая и синхронная aloha.
- •Технология локальных сетей. Уровни llc и mac. Способы доступа.
- •Технология Ethernet.
- •Технология Token Ring.
- •2. Маркерный метод доступа к разделяемой среде
- •3. Форматы кадров Token Ring
- •1. Маркер
- •2. Кадр данных.
- •Технология fddi.
- •Анализ временных характеристик в локальных сетях.
- •Вопросы по курсу «Базы данных» Основные принципы построения баз данных, проблемы хранения больших объемов информации.
- •Уровни представления информации, понятие модели данных.
- •Основные типы субд.
- •Взаимодействие базы данных и прикладных программ.
- •Реляционная модель данных, основные понятия.
- •Теоретические основы реляционного исчисления, использование исчисления предикатов первого порядка.
- •Использование реляционной алгебры в реляционной модели данных.
- •Иерархический и сетевой подходы при построении баз данных, основные понятия, достоинства и недостатки.
- •Реляционные базы данных: достоинства и недостатки.
- •Основные компоненты субд и их взаимодействие. Типы и структуры данных.
- •Обработка данных в субд, основные методы доступа к данным, использование структуры данных типа «дерево».
- •Поиск информации в бд с использованием структуры типа «бинарное дерево».
- •Поиск информации в бд с использованием структуры типа «сильно ветвящееся дерево».
- •Методы хеширования для реализации доступа к данным по ключу.
- •Представление данных с помощью модели «сущность-связь», основные элементы модели.
- •Типы и характеристики связей сущностей
- •Построение диаграммы «сущность-связь» в различных нотациях.
- •Нотация Чена
- •Нотация Мартина
- •Нотация idef1x.
- •Нотация Баркера.
- •Проектирование реляционных баз данных, основные понятия, оценки текущего проекта бд.
- •Понятие ключа в базах данных, первичные и внешние ключи.
- •Нормализация в реляционных базах данных, понятие нормальной формы при проектировании баз данных.
- •1Нф: Основные определения и правила преобразования.
- •2Нф: Основные определения и правила преобразования.
- •3Нф: Основные определения и правила преобразования.
- •Нф Бойса-Кодда: Основные определения и правила преобразования.
- •4Нф: Основные определения и правила преобразования.
- •Ограничения целостности для реляционной базы данных.
Сегментное распределение
При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а это свойство часто бывает очень полезным. Например, можно запретить обращаться с операциями записи и чтения в кодовый сегмент программы, а для сегмента данных разрешить только чтение. Кроме того, разбиение программы на "осмысленные" части делает принципиально возможным разделение одного сегмента несколькими процессами. Например, если два процесса используют одну и ту же математическую подпрограмму, то в оперативную память может быть загружена только одна копия этой подпрограммы.
Рассмотрим, каким образом сегментное распределение памяти реализует эти возможности (рисунок 2.14). Виртуальное адресное пространство процесса делится на сегменты, размер которых определяется программистом с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т.п. Иногда сегментация программы выполняется по умолчанию компилятором.
При загрузке процесса часть сегментов помещается в оперативную память (при этом для каждого из этих сегментов операционная система подыскивает подходящий участок свободной памяти), а часть сегментов размещается в дисковой памяти. Сегменты одной программы могут занимать в оперативной памяти несмежные участки. Во время загрузки система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указывается начальный физический адрес сегмента в оперативной памяти, размер сегмента, правила доступа, признак модификации, признак обращения к данному сегменту за последний интервал времени и некоторая другая информация. Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре.
Рис. 2.14. Распределение памяти сегментами
Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g - номер сегмента, а s - смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.
Странично-сегментное распределение
Как видно из названия, данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. Виртуальное пространство процесса делится на сегменты, а каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента. Оперативная память делится на физические страницы. Загрузка процесса выполняется операционной системой постранично, при этом часть страниц размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении. Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс. На рисунке 2.15 показана схема преобразования виртуального адреса в физический для данного метода.
Рис. 2.15. Схема преобразования виртуального адреса в физический для сегментно-страничной организации памяти
17. КЭШ-память. Назначение. Принцип функционирования.
При обращение процессором на прямую к оперативной памяти, ОП не успевает обслуживать поступающие заявки, процессору в этом случае приходится простаивать. Поэтому необходимо какими-либо методами согласовать быстродействие процессора и ОП. Сделать это можно 2 способами:
Построить ОП на более быстродействующей элементной базе (дорогостоящий)
Использовать специальное структурное решение при организации уровней подсистемы памяти, а именно включений между процессором и ОП быстродействующий КЭШ.
Отличительными особенностями КЭШ являются:
Малый объем (от 8кбайт)
Быстродействие сравнимое с быстродействием процессора.
КЭШ – это тайник, недоступно для программ, так как не может быть адресовано машинными командами.
Суть заключается в следующем, когда процессору понадобилась информация, сначала он обращается к КЭШ памяти, если информация там есть (такое событие называется КЭШ попаданием), то нужное слово извлекается из КЭШ и передается процессору. Если нет (КЭШ промах), то идет обращение к оперативной памяти, информация помещается в КЭШ затем передается процессору.
Пусть
ОП состоит из 2n
адресуемых слов, можно представить ОП
под совокупность блоков фиксированной
длинны по «к» слов в каждом. Тогда емкость
оперативной памяти можно записать
следующим выражением
КЭШ память состоит из C строк по «к» слов в каждой. Причем емкость КЭШ во много раз меньше емкости ОП.
В процессе выполнения задачи, некоторое подмножество блоков в ОП находятся строго в КЭШ. Каждая строка в КЭШ снабжается ТЭГом, является служебной областью, как правило ТЭГ содержит старшие разряды поля адресов памяти. ТЭГ нужен для установления соответствия между ОП и КЭШ.
Структурная организация КЭШ
Важной отличительной особенностью КЭШ является то, что две операции передачи слова и загрузка блока в ОП могут происходить одновременно. КЭШ соединен с процессором линиями: адрес, данные, управление. Линии данные и адрес подключены к соответствующим буфером. Эти буферы имеют выход на системную магистраль, через которую они могут обмениваться с ОП информацией. Если происходит событие КЭШ попадания, то буферы адреса и данных блокируется.
Если происходит КЭШ попадание, то буферы адреса и данных блокируются, весь процесс обращения ведется без участия ОП.
Если происходит событие КЭШ промах, то затребованный процессором адрес выставляется в буфер адреса , передается на системную магистраль, затем происходит поиск в ОП, блок информации копируется в буфер данных, затем передается в КЭШ, затем ЦП.
