
- •Тема1.1: Понятие о термической обработке металлов и сплавов
- •Критические точки железа и его сплавов
- •Тема 1.2: Фазовые превращения в сталях при термообработке Превращения при нагреве
- •Факторы влияющие на размер зерна аустенита
- •Виды сталей в зависимости от склонности к росту зерна
- •Факторы влияющие на размер действительного зерна
- •Методы выявления границ зерна аустенита
- •Дефекты нагрева.
- •Виды защитных атмосфер
- •Превращения переохлаждённого аустенита в изотермических условиях
- •Превращение переохлаждённого аустенита при непрерывном охлаждении.
- •Фазовые превращения при нагреве закалённой стали (при отпуске)
- •Превращения при отпуске
- •Виды отпускной хрупкости
- •Старение углеродистой стали
- •Тема2.1 : Основные составляющие технологического процесса термической обработки
- •Охлаждение Параметры технологического процесса термической обработки
- •Выбор параметров технологических процессов термической обработки
- •Тема 2.2 Оборудование для термической обработки Основное оборудование термических цехов
- •I. Печи и нагревательные установки
- •1. Садочные печи
- •II. Охлаждающие устройства.
- •Дополнительное оборудование
- •I. Оборудование для очистки металла
- •1. Травильные машины
- •Вспомогательное оборудование.
- •Оборудование для получения контролируемых атмосфер.
- •2. Установки для обработки холодом.
- •3. Подъемно-транспортное оборудование
- •Тема 3.1 Классификация видов термообработки Виды термической обработки
- •Виды химико-термической обработки
- •Тема: Отжиг и нормализация стали
- •Виды отжига
- •Тема: Закалка стали
- •Стадии охлаждения при закалке
- •Виды закалки
- •Способы закалки
- •Дефекты закалки
- •Тема: Отпуск стали
- •Виды отпуска
- •Тема: Термомеханическая обработка (тмо)
- •Виды термомеханической обработки (тмо)
- •Тема: Химико-термическая обработка стали
- •Стадии процесса хто
- •Виды химико-термической обработки
- •Виды цементации:
- •Стали применяемые для цементации
- •Тема: Упрочнение стали методом пластической деформации(наклёпом)
- •Способы упрочнения наклёпом:
- •Тема: Дефекты термообработки. Качество стали после термообработки.
- •Дефекты сталеплавильного производства
- •Дефекты прокатного производства
- •Тема: Методы и формы контроля качества продукции Классификация видов контроля качества продукции
- •Разрушающие методы контроля качества металла.
- •Методы неразрушающего контроля качества
- •Приборы для контроля уровня механических свойств
- •2. Приборы для микро и макроанализа.
- •3. Приборы для контроля геометрических размеров
- •Особенности строения слитков стали:
- •Дефекты стальных слитков
- •Виды термической обработки сортового проката из конструкционных сталей
- •Контроль качества сортового проката после то.
- •Термическая обработка сортового проката из инструментальных сталей.
- •То листов из легированных сталей.
- •Требования к сталям для производства ж/д колёс и бандажей
- •Виды то ж/д колёс и бандажей
- •Тема: Упрочняющая термообработка проката Виды упрочняющей обработки проката:
- •Термическая обработка арматуры.
- •Назначение термической обработки валков горячей прокатки
- •Виды термической обработки валков горячей прокатки
Превращение переохлаждённого аустенита при непрерывном охлаждении.
При реальных скоростях охлаждения распад аустенита происходит ниже А1 в интервале температур. Чем больше скорость охлаждения, тем ниже температура начала и конца превращения, и тем дисперснее образующаяся структура.
При охлаждении со скоростью υ1 образуется перлит, υ2- сорбит, υ3- троостит. Бейнит в углеродистых сталях при непрерывном охлаждении не образуется.
При высокой скорости охлаждения υ4 аустенит превращается в мартенсит, но не до конца, поэтому в закалённой стали кроме мартенсита присутствует остаточный аустенит.
Минимальная скорость охлаждения (υк), при которой весь аустенит переохлаждается до точки Mн и превращается в мартенсит, называется критической скоростью закалки.
Критическая
скорость закалки зависит от химического
состава и размера зерна стали. Для
углеродистых сталей она составляет
100-600°С⁄сек. Чем крупнее зерно и больше
легирующих элементов, тем меньше
критическая скорость закалки. Для
легированных сталей она составляет
5-200
С⁄сек.
Критическую скорость закалки можно определить по формуле:
где А1- температура эвтектоидной реакции;
tmin- температура минимальной устойчивости переохлаждённого аустенита;
τmin- время минимальной устойчивости переохлаждённого аустенита в перлитной области.
Для разработки технологии термической обработки пользуются термокинетическими диаграммами, характеризующими фазовые превращения при непрерывном охлаждении.
Для эвтектоидной стали такая диаграмма имеет вид:
Из диаграммы видно, что для одинакового развития превращения при непрерывном охлаждении требуется больше времени и более низкая температура, чем при изотермическом распаде.
Фазовые превращения при нагреве закалённой стали (при отпуске)
В результате закалки образуется мартенсит, характеризующийся большим количеством внутренних напряжений в металле. Поэтому после закалки проводится отпуск - нагрев закалённой стали ниже А1, выдержка при этой температуре и охлаждение с определённой скоростью.
Превращения при отпуске
Распад мартенсита происходит ниже температуры 350°С. В этих условиях происходит выделение атомов углерода из решётки мартенсита и образование карбида железа Fe2C в виде мельчайших дисков (пластин). В результате образуется мартенсит отпуска, состоящий из низкоуглеродистого мартенсита и мельчайших частиц цементита. Снимается часть внутренних напряжений и немного снижается твёрдость, легирующие элементы препятствуют этому процессу.
Превращение остаточного аустенита в мартенсит отпуска происходит при температуре 250-350°С.
Снятие внутренних напряжений и карбидное превращение происходит при температуре 350-400°С, в результате чего завершается процесс выделения углерода из α-раствора (мартенсита) и происходит карбидное превращение Fe2C→Fe3C. После такого отпуска сталь состоит из кристаллов феррита и мельчайших частиц цементита – троостит отпуска.
Коагуляция и сфероидизация карбидов протекает в интервале температур 400-700°С. Тонкопластинчатые карбиды приобретают округлую форму и укрупняются, в результате его троостит отпуска при температуре 500-600°С превращается в сорбит отпуска, а при температуре 650-700°С - в перлит отпуска.
Чем выше температура отпуска, тем сильнее снижается твёрдость стали и сильнее повышается пластичность и вязкость. Для некоторых сталей характерна отпускная хрупкость, т.е. снижение вязкости при отпуске.