
- •1 Вся элементная база в современном мире делятся на 4 группы
- •2 Основные параметры резисторов
- •3 Классификация резисторов
- •4 Система условных обозначений и маркировка резисторов
- •7. Температурный коэффициент сопротивления(ткс).
- •8. Классификация конденсаторов
- •9.Конденсаторы
- •Удельная ёмкость
- •Плотность энергии
- •Номинальное напряжение
- •Полярность
- •Опасность разрушения (взрыва)
- •Паразитные параметры
- •Электрическое сопротивление изоляции конденсатора — r
- •Эквивалентное последовательное сопротивление — r
- •Эквивалентная последовательная индуктивность — l
- •Саморазряд
- •Тангенс угла диэлектрических потерь
- •Температурный коэффициент ёмкости (тке)
- •Диэлектрическая абсорбция
- •Пьезоэффект
- •Самолечение
- •10. По виду диэлектрика различают:
- •11 Влияние внешних факторов на параметры конденсаторов, практическое определение параметров.
- •12 Трансформаторы. Классификация и принцип действия.
- •Основные и паразитные параметры катушек индуктивности.
- •16.Дроселли: обозначение, особенности конструкции и область применения.
- •17. Классификация полупроводниковых диодов.
- •18. Обозначение и маркировка полупроводниковых диодов.
- •19. Полупроводниковые диоды: вольтамперная характеристика и основные параметры.
- •20. Классификация транзисторов обозначение и маркировка.
- •21. Характеристики и основные параметры транзисторов.
- •Применение транзисторов
- •24. Светоизлучающий диод: принцип работы, область применения, основные параметры и характеристики.
- •Преимущества
- •26. Оптопары. Классификация, принцип действия и область применения.
- •28. Виды фотоприемников. Принцип работы.
- •29. Основные параметры и характеристики фотоприемников.
- •30. Фотодиод. Принцип работы, параметры и характеристики.
- •31. Фоторезистор(фр): принцип работы. Параметры и характеристики.
- •32. Когерентная оптоэлектроника. Лазеры. Классификация и основные параметры.
- •33. Структурная схема лазера. Принцип работы и область применения.
- •34.Волоконно-оптические линии связи, структурная схема, параметры.
- •35. Классификация элементов индикации. Принцип действия и параметры газоразрядных индикаторов.
- •38 Вакумно-иллюминисцентный индикатор
- •39 Классификация коммутационных устройств
- •37 Жидкокристалические индикаторы
- •36 Светоизлучающий диод
- •40 Классификация контактных устройств
- •41. Основные характеристики, параметры и виды электромагнитных реле.
- •42.Lc фильтры: схемы, параметры и характеристики.
- •43. Rc фильтры: схемы, параметры и характеристики.
- •44.Фильтры на поверхности акустических волн.
- •45. Фильтры на приборах с зарядовой связью.
- •47 Линия задержки
- •48 Электрические линии задержки
- •49 Ультразвуковые лз
7. Температурный коэффициент сопротивления(ткс).
ТКС - это относительное изменение величины сопротивления резистора при изменении его
температуры на 1 градус.
αт = ТКС = ∆R/R0*∆T,где
∆R - изменение сопротивления;
R0 - начальное сопротивление;
∆T - изменение температуры.
Значение ТКС прецизионных резисторов лежит в пределах от 1 до 100*10-6 1/0С, а для резисторов
общего назначения от 10 до ±2000*10-6 1/0С.
Стабильность резисторов во времени определяется коэффициентом старения
Важным параметром для резистора является напряженность собственных шумов. Собственные шумы
складываются из тепловых и токовых.
Тепловые шумы возникают под действием температуры и не зависят от протекающего тока через
резистор.
Тепловые шумы невозможно уменьшить или исключить, т.к. они существуют не зависимо от тока,
протекающему по резистору.
Токовые шумы возникают дополнительно к тепловым шумам, они зависят от материала конструкции
резистивного элемента и характерны для непроволочных, в основном пленочных, резисторов. Они
значительно больше тепловых
Величины ЭДС, возникающих в результате теплового и токового шумов, имеют значения
порядка от десятых до десятков микровольт на вольт приложенного напряжения.
Собственные шумы определяются однородностью резистивного элемента. Наибольший
уровень собственных шумов у композиционных резисторов.,
8. Классификация конденсаторов
Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.
По виду диэлектрика различают:
Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
Конденсаторы с газообразным диэлектриком.
Конденсаторы с жидким диэлектриком.
Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слойполупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой илитанталовой фольги или спечённого порошка.
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, врадиоприёмниках для перестройки частоты резонансного контура.
Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.
Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.