
- •Классификация, критерии оценки и структура ос.
- •Критерии оценки ос
- •Надежность
- •Эффективность
- •Удобство
- •Масштабируемость
- •Способность к развитию
- •Мобильность
- •Основные функции и структура ос
- •Классификация и архитектура внешних устройств. Классификация периферийных устройств и их архитектура
- •Способы организации ввода/вывода. Синхронный и асинхронный ввод/вывод. Архитектура подсистемы ввода/вывода
- •Ввод/вывод по опросу и по прерываниям
- •Активное и пассивное ожидание
- •Синхронный и асинхронный ввод/вывод
- •Буферизация и кэширование.
- •Сглаживание неравномерности скоростей процессов
- •Распараллеливание ввода и обработки
- •Согласование размеров логической и физической записи
- •Редактирование при интерактивном вводе
- •Кэширование дисков
- •Опережающее чтение.
- •Драйверы устройств. Типовая структура драйвера.
- •Уровни доступа к устройствам в ms-dos. Драйверы устройств ms-dos.
- •Драйверы устройств в ms-dos
- •Управление символьными устройствами в ms-dos. (На примере клавиатуры) Управление символьными устройствами
- •Управление блочными устройствами в ms-dos. (Структура диска) Управление блочными устройствами Структура диска
- •Разделы и логические тома
- •Управление устройствами в Windows и unix. Управление устройствами в Windows Драйверы устройств в Windows
- •Управление устройствами в unix Драйверы устройств в unix
- •Устройство как специальный файл
- •Характеристики файлов и архитектура файловых систем.
- •Размещение файлов.
- •Разделение файлов между процессами. Разделение файлов между процессами
- •Файловая система fat. Структуры данных на диске, создание и удаление файлов. Файловая система fat и управление данными в ms-dos Общая характеристика системы fat
- •Структуры данных на диске
- •Создание и удаление файла
- •Работа с файлами в ms-dos. Хэндлы. Внутренние структуры данных подсистемы управления данными (sft, jft). Работа с файлами в ms-dos. Системные функции.
- •Доступ к данным
- •Структуры данных в памяти
- •Архитектура файловой системы unix.
- •Жесткие и символические связи
- •Монтируемые тома
- •Типы и атрибуты файлов
- •Управление доступом к файлам в unix. Управление доступом
- •Структуры данных файловой системы unix.
- •Развитие файловых систем unix. Развитие файловых систем unix
- •Особенности файловой системы ntfs. Особенности файловой системы ntfs
- •Структуры дисковых данных
- •Главная таблица файлов
- •Атрибуты файла
- •Доступ к данным в Windows. Доступ к данным
- •Защита данных в Windows. Защита данных
- •Аутентификация пользователя
- •Дескриптор защиты
- •Процессы и ресурсы. Квазипараллельное выполнение процессов. Понятия процесса и ресурса
- •Квазипараллельное выполнение процессов
- •Состояния процесса. Состояния процесса
- •Вытесняющая и невытесняющая многозадачность. Вытесняющая и невытесняющая многозадачность
- •Дескриптор и контекст процесса. Реентерабельность системных функций. Дескриптор и контекст процесса
- •Реентерабельность системных функций
- •Дисциплины диспетчеризации и приоритеты процессов. Дисциплины диспетчеризации и приоритеты процессов
- •Изоляция и взаимодействие процессов. Проблема взаимного исключения. Изоляция процессов и их взаимодействие
- •Проблема взаимного исключения процессов
- •Двоичные семафоры Дейкстры. Средства взаимодействия процессов. Двоичные семафоры Дейкстры
- •Средства взаимодействия процессов
- •Целочисленные семафоры
- •Семафоры с множественным ожиданием
- •Сигналы
- •Сообщения
- •Общая память
- •Программные каналы
- •Проблема тупиков. Проблема тупиков
- •Процессы и нити в Windows.
- •Планировщик процессов в Windows. Планировщик Windows
- •Синхронизация нитей и функции ожидания в Windows. Синхронизация нитей. Способы синхронизации.
- •Объекты синхронизации и функции ожидания
- •Объекты синхронизации в Windows. Критические секции. Типы объектов синхронизации
- •Критические секции
- •Механизм обмена сообщениями в Windows.
- •Жизненный цикл процесса в unix. Группы процессов. Жизненный цикл процесса
- •Группы процессов
- •Программные каналы
- •Сигналы
- •Интерпретатор команд shell
- •Виртуальные и физические адреса
- •Распределение памяти без использования виртуальных адресов Настройка адресов
- •Распределение с фиксированными разделами
- •Распределение с динамическими разделами
- •40. Сегментная и страничная организация памяти. Сегментная организация памяти
- •Страничная организация памяти
- •Управление памятью в Windows Структура адресного пространства
- •Регионы
- •Отображение исполняемых файлов
- •Файлы, отображаемые на память
- •Стеки и кучи
Ввод/вывод по опросу и по прерываниям
Рассмотрим более подробно работу программы, непосредственно выполняющей ввод или вывод данных на конкретное устройство. (На самом деле, этой работой обычно занимается драйвер устройства, так что мы фактически рассматриваем логику работы драйвера.)
Для определенности положим, что программа должна выдать N байт данных из массива A на символьное устройство X. Для операции ввода могут использоваться те же подходы, которые будут рассмотрены здесь для операции вывода.
Пусть архитектура устройства представлена регистром данных X.DATA и флагом готовности X.READY. Когда X.READY = TRUE, в регистр X.DATA можно выдавать очередной байт данных. Запишем на псевдокоде, близком к языку Паскаль, варианты организации соответствующей программы.
а) Ввод/вывод без проверки готовности
i := 1;
while i <= N do begin
X.DATA := A[i];
i := i + 1;
end;
Этот «наглый» способ вывода вполне работоспособен, если используется «всегда готовое» устройство (например, монитор), т.е. флаг X.READY всегда истинен и потому вообще не нужен. При попытке использовать тот же подход для вывода на принтер мы убедились бы, что напечатаны будут лишь некоторые символы, которым посчастливилось быть выданными в редкие моменты готовности принтера.
б) Ввод/вывод по опросу готовности
i := 1;
while i <= N do begin
while not X.READY do
;
X.DATA := A[i];
i := i + 1;
end;
Здесь добавлен цикл ожидания, в котором не делается ничего, кроме постоянной циклической проверки готовности устройства. Передача данных происходит только тогда, когда устройство готово. Поскольку после выдачи одного байта устройство вполне может опять перейти в состояние неготовности, следует опять выполнять цикл ожидания, пока выданный символ не будет обработан устройством.
Такая организация ввода/вывода позволяет корректно работать с любыми устройствами. Этот способ действительно применяется в некоторых однозадачных системах. Недостатком данного способа является непроизводительная трата времени на постоянное «долбление» флага готовности. При современном соотношении скоростей работы процессора и периферии, цикл ожидания может повторяться миллионы раз перед выдачей каждого байта. Более того, если по каким-то причинам устройство вообще не перейдет в состояние готовности, то работа всей системы может быть парализована бесконечным циклом ожидания.
в) Ввод/вывод по прерываниям
i := 1;
while i <= N do begin
X_INT: if not X.READY
return;
X.DATA := A[i];
i := i + 1;
end;
Здесь исчез цикл ожидания, вместо него — однократная проверка готовности и оператор возврата, если не готово.
Куда, собственно, происходит возврат? Чтобы это понять, надо вспомнить, что данный фрагмент — явно не единственная программа, работающая в данный момент на ЭВМ. Очевидно, операция вывода была начата операционной системой по запросу какой-то программы. Данный фрагмент был вызван как подпрограмма ОС, и возврат означает передачу управления ОС. Как система распорядится полученным временем? Это уже совсем другой вопрос, не связанный с вводом/выводом. Например, ОС может переключиться на другой процесс. Или, от нечего делать, запустить экранную заставку либо программу самотестирования.
Но как же быть с брошенной на полпути операцией вывода? Для ее возобновления будет использовано аппаратное прерывание, которое должно выдать устройство X при переходе в состояние готовности. Системный обработчик прерывания должен будет передать управление по адресу, обозначенному меткойX_INT. После нелишней дополнительной проверки готовности программа вывода передаст очередной байт на устройство, затем снова проверит готовность и, возможно, вновь вернет управление системе. Таким образом, выполнение ввода/вывода разбивается на отдельные интервалы работы при готовности устройства, перемежающиеся работой системы, пока устройство не готово.
Для устройств, использующих контроллер ПДП, возможные варианты организации работы остаются, по сути, теми же, но только используются гораздо более крупные операции: вместо ввода или вывода одного элемента данных выполняется ввод/вывод целого блока данных, и только после этого контроллер переходит в состояние готовности и генерирует прерывание.