
- •Историческое возникновение и развитие скорости света
- •1.1 Первые попытки определения скорости света
- •1.2 Определение скорости света Рёмером
- •1.3 Определение скорости света по методу вращающегося зеркала методом Фуко
- •1.4 Определение скорости света Физо
- •Скорость света и ее определение
- •3. Теория относительности Эйнштейна
- •4. Сверхзвуковая скорость
Скорость света и ее определение
Скорость света – абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c» (произносится как [цэ]). Скорость света относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела, а свойства мира в целом. По современным представлениям скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.
Значимость скорости света
Скорость света в вакууме - фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Это постоянная, по размерности и по величине совпадающая со скоростью света.
Также важен тот факт, что эта величина абсолютна. Это один из постулатов СТО.
В вакууме (пустоте)
Распространение светового луча в масштабной модели Земля-Луна
Скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или же 1 079 252 848.8 км/ч. Точное значение связано с тем, что с 1983 года за эталон метра принято расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды. Скорость света обозначается буквой c.
Основополагающий для СТО опыт Майкельсона показал, что скорость света в вакууме не зависит ни от скорости движения источника света, ни от скорости движения наблюдателя. В природе со скоростью света распространяются:
– собственно видимый свет
– другие виды электромагнитного излучения (радиоволны, рентгеновские лучи и др.)
Из специальной теории относительности следует, что движение любых материальных объектов быстрее скорости света невозможно, поскольку наличие частиц, обладающих подобным свойством (называемых тахионами), привело бы к противоречию с принципом причинности.
Действительно, если начало и конец пути тахиона отстоят друг от друга на расстояние большее, чем мог пройти за время пути свет, то согласно преобразованиям Лоренца получается, что в некоторой системе отсчёта, процесс будет выглядеть так, что конец пути предшествует во времени его началу. Иными словами, наблюдатель этой системы отсчёта придёт к заключению, что источник тахионов влияет на прошлое, что является нарушением принципа причинности. Принцип причинности является несомненным опытным фактом, хотя и не является логически обязательным (ни одна теория не использует его в качестве постулата).
Частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой покоя, в отличие от безмассовых фотонов и гравитонов, которые всегда движутся со скоростью света.
В планковских единицах скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.
Отрицание постулата о максимальности скорости света
В последние годы нередко появляются сообщения о том, что в так называемой квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, 15 августа 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесенные на 18 км в пространстве связанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана - сверхсветовая скорость при туннельном эффекте.
Научный анализ значимости этих и подобных результатов показывает, что они принципиально не могут быть использованы для сверхсветовой передачи какого-либо сигнала или перемещения вещества.