Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_statistike.docx
Скачиваний:
45
Добавлен:
26.04.2019
Размер:
178.78 Кб
Скачать

8. Дисперсия случайной величины и ее свойства. Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Свойства

  • Дисперсия любой случайной величины неотрицательна: 

  • Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;

  • Если случайная величина равна константе, то её дисперсия равна нулю: D[a] = 0. Верно и обратное: если D[X] = 0, то X = M[X] почти всюду;

  • Дисперсия суммы двух случайных величин равна:

, где   — их ковариация;

9. Общие свойства случайных величин.

Неравенство Чебышева в теории вероятностей утверждает, что случайная величина в основном принимает значения, близкие к своему среднему. Говоря более точно, оно даёт оценку вероятности, что случайная величина примет значение, далёкое от своего среднего.

Одно из основных неравенств для монотонных последовательностей или функций.

Если случайная величина Х имеет конечные математическое ожидание М(Х) и дисперсию Д(Х), то для любого положительного e справедливо неравенство

Данное неравенство часто дает грубую, не представляющую интереса оценку. Например, пусть тогда

     Тем не менее, данное неравенство имеет большое теоретическое значение. С его помощью доказываются теоремы и делаются теоретические выводы.

10. Теорема Бернулли

 Теорема Бернулли: Если вероятность события А в каждом из п независимых испытаний постоянна и равна р, то при достаточно большом п для произвольного e >0 справедливо неравенство

  

Переходя к пределу, имеем

 

Теорема Бернулли устанавливает связь между вероятностью появления события и его относительной частотой появления и позволяет при этом предсказать, какой примерно будет эта частота в п испытаниях. Из теоремы видно, что отношение т/п обладает свойством устойчивости при неограниченном росте числа испытаний.

11. Теорема Ляпунова.

В теории вероятностей, теорема, устанавливающая некоторые весьма общие достаточные условия для сходимости распределения сумм независимых случайных величин к нормальному закону. Сформулирована и доказана А. М. Ляпуновым в 1901. равномерно относительно всех значений хи хЛяпунов дал также оценку скорости сходимости в Л. т. В дальнейшем были установлены условия, расширяющие условие Ляпунова и являющиеся

не только достаточными, но в нек-ром смысле необходимыми. См. Предельные теоремы теории вероятностей.

12. Теорема Чебышева.

Теорема Чебышева: При достаточно большом числе независимых случайных величин Х1, Х2, Х3, ..., Хn, дисперсия каждой из которых не превышает одного и того же постоянного числа В, для произвольного сколько угодно малого числа e справедливо неравенство Из теоремы следует, что среднее арифметичес­кое случайных величин при возрастании их числа проявляет свойство устойчивости, т. е. стремится по вероятности к неслучайной величине, которой является среднее арифметическое математических ожиданий этих величин, т.е. вероятность отклонения по абсолютной величине среднего арифметического случайных величин от среднего арифметического их математических ожиданий меньше чем на e при неограниченном возрастании n стремится к 1, т.е. становится практически достоверным событием.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]