
- •5.Методология. Теоретические, эмпирические, общенаучные, конкретно-научные методы познания
- •6.Механическии принцип относотельности и инвариантности Галилея
- •7.Три принципа научного познания действительности
- •8.Естественно-научная картина мира.Классическая механическая картина мира.
- •9.Законы Ньютона.Закон всемирного тяготения
- •10.Принцип универсальности.
- •11.Принцип детерминизма и индетерминизма. Даемон Лапласа
- •12.Симметрия.Принципы симметрии.Калибровочная симметрия.
- •13.Законы сохранения(импулься, момента импульса, энергии, заряда)
- •14.Теорема Эмми Нётер.Следствие из теоремы Эмми Нётер
- •15.Концепции близкодействия и дальнодействия
- •16.Концепция атомизма
- •17.Волновые свойства света.Интерфереренция.Дифракция.
- •18. Внешнии фотоэффект. Уравнение Эйнштейна для фотоэффекта (представление о корпускулярных свойствах света).
- •19.Элементы специальной теории относительности.Постулаты Эйншейна.Следствие из преобразований Лоренца
- •20.Современные представления о пространстве и времени. Однородность, изотопность пространства.Однородность, необратимость времени.ОТносительность пространства-времени.
- •21.Элементы специальной теории относительности.Экспериментальные доказательства общей теории относительности.
- •22.Принцип соответствия
- •23.Квантово- полевая модель атома Резерфорда-Бора.Постулаты Бора
- •24.Принцип тождественности
- •26. Уравнение Шредингера.Волны вероятностей.(Элементы квантовой механики)
- •27.Концепция корпускулярно-волнового дуализма
- •28.Принцеп неопределенности гейзенберга в квантовой механики
- •29.Принцип дополнительности бора
- •30.Тепловое излучение. Ультрофиолетовая катастрофа. Закон Стефана Больцмана для обсалютно черного тела.
- •31.Динамические и статестические закономерности в природе.
- •32.Концепция системного подхода
- •33.Революции в истории человечества (научные, промышленная, научно-техническая)
- •35.Типы фундаментальных взаимодействий.Разработки по созданию единой теории поля
- •36.Элементарные частицы.Свойства и квалификация. Переносчики фундаментальных взаймодействии (глюоны, векторные бозоны,гравитоны, фотоны).
- •37.Структурные уровни организации материи.Микро, Макро, Мегамиры.Масштабы вселенной
- •38.Радиоактивность.Основной закон радиоактивности.
- •39.Астрономическая картина мира.Теория большого взрыва. Инфляционный сценарии развития Вселенной в современной космологии. Космонавтика
- •40.Планеты солнечной системы.Гипотезы происхождения и их характеристики.
- •42.Концептуальные уровни развития химических систем.Реакционная способность веществ.
- •43.Правило Вант-Гоффа.Закон действия масс.Принцип Ле-Шаталье.
- •44. Биология. Отличия живого от не живого.Модели происхождения жизни.
- •45.Основные биологические уровни организации материи.Витализм.Редукционизм.Физикализм(в истории биологии)
- •46.Диалектизация естествознания.Небулярная гипотеза и. Канта.Эволюционная теория ч.Дарвина.
- •47.Формы естественного отбора: стабилизирующий, движущий, дизруптивный
- •48.Изменчивость. Виды изменчивости: модификационная(фенотипическая); наследственная(генотипическая: мутационная, комбинативная)
- •50.Генетика.Основные этапы развития генетики.Законы Менделя.Введение в генную инженерию.
- •51.Строение и функции белков.Аминокислоты.4 уровня организации белковой молекулы.
- •52.Нуклеиновые кислоты (днк).Нуклеотиды.Азотистые основания.Водородные связи.
- •53.Матричный синтез белка. Строение рнк(иРнк, рРнк, тРнк).Триплет кодоны.
- •54.Происхождение и эволюция человека.Основные уровни антропогинеза.
- •55.Развитие нервной системы.Мозг.Сознательное,Безсознательное.
- •56.Экология.Роль окружабщей среды в эволюции живого.
- •57.Человек: физиология, здоровье, эмоции, творчесво, работоспособность.
- •58.Введение в биоэтику.
- •59.Ведение в кибернетику.Системы с обратной связью.Нанотехнологии.
- •60.Многообразие живых организмов основа организации и устойчивости биосферы. Учение о биосфере в.И.Вернадского.
- •61.Учение о ноосфере вернадского.
- •62.Основные начала термодинамики и применение их к организации окружающего мира и Вселенной.
- •63.Понятие энтропии и негэнтропии.
- •65. Порядок и беспорядок в природе. Синергетика. Характеристики самоорганизующихся систем. Точка бифуркации. Значение синергетики для современной науки.
- •66.Концепция универсального (глобального) эволюционизма.
- •67.Принцип верификации и фальсификации.
- •68.Антропный принцип.
- •Дополнительные вопросы.
- •1.Лазеры. СВойство лазерного излучения.
52.Нуклеиновые кислоты (днк).Нуклеотиды.Азотистые основания.Водородные связи.
Нуклеиновые кислоты
Основная статья: ДНК
1.Первичная структура ДНК — это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5'- на 3'-конец цепи.
2.Вторичная структура — это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипаралельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований — образования водородных связей, двух в паре А-Т и трёх в паре G-C.
В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105-106. Исходными веществами, из которых построены нуклеотиды – звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой – дезоксирибоза
В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.
нуклиотид.Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.
В природе наиболее распространены нуклеотиды, являющиеся β-N-гликозидами пуринов или пиримидинов и пентоз — D-рибозы или D-2-рибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров (полинуклеотидов) — соответственно РНК или ДНК.
Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2'-, 3'- или 5'-гидроксильными группами рибонуклеозидов, в случае 2'-дезоксинуклеозидов этерифицируются 3'- или 5'-гидроксильные группы.
Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка — например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ). Наряду с нуклеотидами — эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например, аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозинтрифосфат).
Азотистые основания.Водородные связи.
Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.
В клетках эукариотов (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине 1962 г.