
- •5.Методология. Теоретические, эмпирические, общенаучные, конкретно-научные методы познания
- •6.Механическии принцип относотельности и инвариантности Галилея
- •7.Три принципа научного познания действительности
- •8.Естественно-научная картина мира.Классическая механическая картина мира.
- •9.Законы Ньютона.Закон всемирного тяготения
- •10.Принцип универсальности.
- •11.Принцип детерминизма и индетерминизма. Даемон Лапласа
- •12.Симметрия.Принципы симметрии.Калибровочная симметрия.
- •13.Законы сохранения(импулься, момента импульса, энергии, заряда)
- •14.Теорема Эмми Нётер.Следствие из теоремы Эмми Нётер
- •15.Концепции близкодействия и дальнодействия
- •16.Концепция атомизма
- •17.Волновые свойства света.Интерфереренция.Дифракция.
- •18. Внешнии фотоэффект. Уравнение Эйнштейна для фотоэффекта (представление о корпускулярных свойствах света).
- •19.Элементы специальной теории относительности.Постулаты Эйншейна.Следствие из преобразований Лоренца
- •20.Современные представления о пространстве и времени. Однородность, изотопность пространства.Однородность, необратимость времени.ОТносительность пространства-времени.
- •21.Элементы специальной теории относительности.Экспериментальные доказательства общей теории относительности.
- •22.Принцип соответствия
- •23.Квантово- полевая модель атома Резерфорда-Бора.Постулаты Бора
- •24.Принцип тождественности
- •26. Уравнение Шредингера.Волны вероятностей.(Элементы квантовой механики)
- •27.Концепция корпускулярно-волнового дуализма
- •28.Принцеп неопределенности гейзенберга в квантовой механики
- •29.Принцип дополнительности бора
- •30.Тепловое излучение. Ультрофиолетовая катастрофа. Закон Стефана Больцмана для обсалютно черного тела.
- •31.Динамические и статестические закономерности в природе.
- •32.Концепция системного подхода
- •33.Революции в истории человечества (научные, промышленная, научно-техническая)
- •35.Типы фундаментальных взаимодействий.Разработки по созданию единой теории поля
- •36.Элементарные частицы.Свойства и квалификация. Переносчики фундаментальных взаймодействии (глюоны, векторные бозоны,гравитоны, фотоны).
- •37.Структурные уровни организации материи.Микро, Макро, Мегамиры.Масштабы вселенной
- •38.Радиоактивность.Основной закон радиоактивности.
- •39.Астрономическая картина мира.Теория большого взрыва. Инфляционный сценарии развития Вселенной в современной космологии. Космонавтика
- •40.Планеты солнечной системы.Гипотезы происхождения и их характеристики.
- •42.Концептуальные уровни развития химических систем.Реакционная способность веществ.
- •43.Правило Вант-Гоффа.Закон действия масс.Принцип Ле-Шаталье.
- •44. Биология. Отличия живого от не живого.Модели происхождения жизни.
- •45.Основные биологические уровни организации материи.Витализм.Редукционизм.Физикализм(в истории биологии)
- •46.Диалектизация естествознания.Небулярная гипотеза и. Канта.Эволюционная теория ч.Дарвина.
- •47.Формы естественного отбора: стабилизирующий, движущий, дизруптивный
- •48.Изменчивость. Виды изменчивости: модификационная(фенотипическая); наследственная(генотипическая: мутационная, комбинативная)
- •50.Генетика.Основные этапы развития генетики.Законы Менделя.Введение в генную инженерию.
- •51.Строение и функции белков.Аминокислоты.4 уровня организации белковой молекулы.
- •52.Нуклеиновые кислоты (днк).Нуклеотиды.Азотистые основания.Водородные связи.
- •53.Матричный синтез белка. Строение рнк(иРнк, рРнк, тРнк).Триплет кодоны.
- •54.Происхождение и эволюция человека.Основные уровни антропогинеза.
- •55.Развитие нервной системы.Мозг.Сознательное,Безсознательное.
- •56.Экология.Роль окружабщей среды в эволюции живого.
- •57.Человек: физиология, здоровье, эмоции, творчесво, работоспособность.
- •58.Введение в биоэтику.
- •59.Ведение в кибернетику.Системы с обратной связью.Нанотехнологии.
- •60.Многообразие живых организмов основа организации и устойчивости биосферы. Учение о биосфере в.И.Вернадского.
- •61.Учение о ноосфере вернадского.
- •62.Основные начала термодинамики и применение их к организации окружающего мира и Вселенной.
- •63.Понятие энтропии и негэнтропии.
- •65. Порядок и беспорядок в природе. Синергетика. Характеристики самоорганизующихся систем. Точка бифуркации. Значение синергетики для современной науки.
- •66.Концепция универсального (глобального) эволюционизма.
- •67.Принцип верификации и фальсификации.
- •68.Антропный принцип.
- •Дополнительные вопросы.
- •1.Лазеры. СВойство лазерного излучения.
38.Радиоактивность.Основной закон радиоактивности.
Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория» и «Радиоактивное превращение», сформулировав следующим образом:
Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.
из чего с помощью теоремы Бернулли учёные сделали вывод[источник не указан 151 день]:
Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.
Существует несколько формулировок закона, например, в виде дифференциального уравнения:
........
которое означает, что число распадов -dN, произошедшее за короткий интервал времени dt, пропорциональнo числу атомов в образце N.
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).
Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.
Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.
Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада.
В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с эмиссией нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или β + -распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.
Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).
Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.