
- •1. Предмет физики, физические модели. Механическое движение как простейшая форма изменения состояния в материальном мире. Системы координат. Векторы.
- •2. Кинематика поступательного движения. Прямая и обратная задачи кинематики.
- •3.Криволинейное движение. Нормальное, тангенциальное и полное ускорение при криволинейном движении.
- •4. Кинематика вращательного движения. Угловая скорость и угловое ускорение как квазивекторы.
- •5. Связь между линейными и угловыми кинематическими характеристиками движения.
- •6.Виды взаимодействий и категории сил в природе.
- •7.Законы динамики поступательного движения материальной точки. Импульс материальной точки, его связь с импульсом силы.
- •8.Закон сохранения импульса. Понятие центра инерции системы. Теорема о движении центра инерции системы.
- •9. Момент силы и момент импульса материальной точки относительно неподвижной оси. Уравнение моментов.
- •10.Основной закон динамики вращательного движения. Понятие момента инерции материальной точки.
- •11. Закон сохранения момента импульса.
- •12.Уравнение движения абсолютно твердого тела. Момент инерции абсолютно твердого тела. Теорема Штейнера.
- •13. Силы инерции в поступательно движущихся нисо.
- •14.Силы инерции в равномерно вращающихся нисо. Центробежная сила инерции.
- •16.Кинетическая энергия частицы. Работа и кинетическая энергия вращательного движения.
- •17. Консервативные и неконсервативные силы. Силовое поле. Признак потенциальности поля.
- •18. Потенциальная энергия. Связь потенциальной энергии и силы поля.
- •19.Закон сохранения и изменения энергии в механике.
- •Формулировка закона сохранения и превращения энергии:
- •20.Преобразования Галилея. Механический принцип относительности.
- •21. Постулаты специальной теории относительности. Преобразования Лоренца.
- •22. Следствия из преобразований Лоренца.
- •23.Элементы релятивистской динамики.
- •24. Идеальная и вязкая жидкость. Стационарное движение идеальной жидкости. Уравнение Бернулли.
- •25.Коэффициент вязкости. Ламинарное и турбулентное течение жидкости. Критерий Рейнольдса . Формула Стокса.
- •26. Упругие деформации. Закон Гука. Энергия упруго-деформированного тела.
- •27. Электрические заряды. Закон сохранения заряда. Закон Кулона.
- •28.Напряженность электрического поля. Силовые линии электрического поля. Принцип суперпозиции. Электрический диполь.
- •29.Циркуляция вектора напряженности электростатического поля. Потенциал поля.
- •30. Связь между напряженностью и потенциалом электростатического поля. Эквипотенциальные поверхности.
- •31.Объемная, поверхностная и линейная плотность электрического заряда. Теорема Гаусса.
- •32. Поведение диполя в электрическом поле.
- •33.Распределение электрических зарядов на проводнике. Связь между напряженностью поля у поверхности проводника и поверхностной плотностью заряда.
- •34. Электрическая емкость уединенного проводника. Взаимная электроемкость.
- •35. Конденсаторы. Электрическая емкость плоского сферического и цилиндрического конденсаторов. Соединение конденсаторов.
- •37. Диэлектрики. Поляризация диэлектриков. Вектор поляризации. Связанные заряды.
- •38. Напряженность электрического поля в диэлектрике. Вектор электрического смещения. Связь между векторами.
- •Чем больше потенциал больше – тем вектор напряженности длинней.
- •39. Диэлектрическая восприимчивость и диэлектрическая проницаемость среды.
- •41. Сила и плотность электрического тока. Законы Ома и Джоуля-Ленца в интегральной и дифференциальной формах.
- •42. Сопротивление проводников. Зависимость сопротивления проводников от температуры.
- •43. Сторонние силы. Эдс источника тока. Циркуляция вектора напряженности поля сторонних сил.
- •44. Понятие электрического напряжения. Закон Ома для неоднородного участка цепи, для замкнутой цепи, содержащей источник тока.
- •45. Разветвленные электрические цепи. Законы Кирхгофа и их применение для расчета электрических цепей.
- •Первый закон
- •Второй закон
24. Идеальная и вязкая жидкость. Стационарное движение идеальной жидкости. Уравнение Бернулли.
Это уравнение и есть уравнение Бернулли. Это уравнение является следствием закона сохранения энергии для установившегося течения идеальной жидкости (p - статическое давление, p*(v*v)/2 - динамическое давление, pgh - гидростатическое давление).
Динамическое давление связано с движением жидкости и проявляется в том случае, если жидкость при встрече с препятствием теряет скорость (v ->0).
Идеальная жидкость – жидкость, плотность которой не зависит от давления и постоянна в любой пространственной области, а вязкость (внутреннее трение) отсутствует. При движении идеальной жидкости не происходит превращения механической энергии в тепловую, то есть механическая энергия жидкости сохраняется.
Нью́тоновская жидкость— вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость.
25.Коэффициент вязкости. Ламинарное и турбулентное течение жидкости. Критерий Рейнольдса . Формула Стокса.
Сила вязкого трения пропорциональна скорости относительного движения тел, пропорциональна площади и обратно пропорциональна расстоянию между плоскостями. Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела придут в движение при наличии сколь угодно малой силы, то есть не существует трения покоя. Это отличает вязкое трение от сухого. Коэффициент вязкости жидкости - это единица связанная с ее способностью выдерживать поперечную силу. Веществам с высоким коэффициентом вязкости требуется большая поперечная сила для сдвигания жидкостей, чем веществам с меньшим коэффициентом вязкости. Вязкость не является постоянным, фиксированным свойством жидкости. Эта характеристика, изменяющаяся в зависимости от плотности жидкости и температуры. Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления. Все течения жидкости и газа качественно разделяются на 2 режима – ламинарный и турбулентный. Ламинарное– это упорядоченное плавное течение жидкости, при котором жидкость перемещается как бы слоями, параллельными направлению течения (например – стенкам цилиндрической трубы), не перемешиваясь. Эти течения наблюдаются или у очень вязких жидкостей, или при малых скоростях течения, а также при течениях в узких трубках или при обтекании тел малых размеров.
Вообще тот или
иной режим течения характеризуется
числом Рейнольдса
,
–
кинематический коэффициент вязкости.
Для каждого вида течения существует такое критическое число Рейнольдса, что при Re<Reкр возможно только ламинарное течение, в то время как при Re>Reкр течение может потерять устойчивость по отношению к малым возмущениям исходных параметров и стать.
При турбулентном течении частицы жидкости совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости, т.е. слоистая структура течения нарушается; при этом местные значения параметров движения – V, p, T,… испытывают хаотические флуктуации, т.е. случайные отклонения от средних значений, и изменяются нерегулярно во времени и пространстве.
Формула Стокса
— связывающая скорость падения (V) в жидкости твердой сферической частицы с ее размерами (радиус r), ее плотностью (Dt). а также плотностью ( D ж) и вязкостью (η) жидкости:
.