
- •1. Предмет физики, физические модели. Механическое движение как простейшая форма изменения состояния в материальном мире. Системы координат. Векторы.
- •2. Кинематика поступательного движения. Прямая и обратная задачи кинематики.
- •3.Криволинейное движение. Нормальное, тангенциальное и полное ускорение при криволинейном движении.
- •4. Кинематика вращательного движения. Угловая скорость и угловое ускорение как квазивекторы.
- •5. Связь между линейными и угловыми кинематическими характеристиками движения.
- •6.Виды взаимодействий и категории сил в природе.
- •7.Законы динамики поступательного движения материальной точки. Импульс материальной точки, его связь с импульсом силы.
- •8.Закон сохранения импульса. Понятие центра инерции системы. Теорема о движении центра инерции системы.
- •9. Момент силы и момент импульса материальной точки относительно неподвижной оси. Уравнение моментов.
- •10.Основной закон динамики вращательного движения. Понятие момента инерции материальной точки.
- •11. Закон сохранения момента импульса.
- •12.Уравнение движения абсолютно твердого тела. Момент инерции абсолютно твердого тела. Теорема Штейнера.
- •13. Силы инерции в поступательно движущихся нисо.
- •14.Силы инерции в равномерно вращающихся нисо. Центробежная сила инерции.
- •16.Кинетическая энергия частицы. Работа и кинетическая энергия вращательного движения.
- •17. Консервативные и неконсервативные силы. Силовое поле. Признак потенциальности поля.
- •18. Потенциальная энергия. Связь потенциальной энергии и силы поля.
- •19.Закон сохранения и изменения энергии в механике.
- •Формулировка закона сохранения и превращения энергии:
- •20.Преобразования Галилея. Механический принцип относительности.
- •21. Постулаты специальной теории относительности. Преобразования Лоренца.
- •22. Следствия из преобразований Лоренца.
- •23.Элементы релятивистской динамики.
- •24. Идеальная и вязкая жидкость. Стационарное движение идеальной жидкости. Уравнение Бернулли.
- •25.Коэффициент вязкости. Ламинарное и турбулентное течение жидкости. Критерий Рейнольдса . Формула Стокса.
- •26. Упругие деформации. Закон Гука. Энергия упруго-деформированного тела.
- •27. Электрические заряды. Закон сохранения заряда. Закон Кулона.
- •28.Напряженность электрического поля. Силовые линии электрического поля. Принцип суперпозиции. Электрический диполь.
- •29.Циркуляция вектора напряженности электростатического поля. Потенциал поля.
- •30. Связь между напряженностью и потенциалом электростатического поля. Эквипотенциальные поверхности.
- •31.Объемная, поверхностная и линейная плотность электрического заряда. Теорема Гаусса.
- •32. Поведение диполя в электрическом поле.
- •33.Распределение электрических зарядов на проводнике. Связь между напряженностью поля у поверхности проводника и поверхностной плотностью заряда.
- •34. Электрическая емкость уединенного проводника. Взаимная электроемкость.
- •35. Конденсаторы. Электрическая емкость плоского сферического и цилиндрического конденсаторов. Соединение конденсаторов.
- •37. Диэлектрики. Поляризация диэлектриков. Вектор поляризации. Связанные заряды.
- •38. Напряженность электрического поля в диэлектрике. Вектор электрического смещения. Связь между векторами.
- •Чем больше потенциал больше – тем вектор напряженности длинней.
- •39. Диэлектрическая восприимчивость и диэлектрическая проницаемость среды.
- •41. Сила и плотность электрического тока. Законы Ома и Джоуля-Ленца в интегральной и дифференциальной формах.
- •42. Сопротивление проводников. Зависимость сопротивления проводников от температуры.
- •43. Сторонние силы. Эдс источника тока. Циркуляция вектора напряженности поля сторонних сил.
- •44. Понятие электрического напряжения. Закон Ома для неоднородного участка цепи, для замкнутой цепи, содержащей источник тока.
- •45. Разветвленные электрические цепи. Законы Кирхгофа и их применение для расчета электрических цепей.
- •Первый закон
- •Второй закон
1. Предмет физики, физические модели. Механическое движение как простейшая форма изменения состояния в материальном мире. Системы координат. Векторы.
Физика – это наука изучающая общие свойства и законы движения вещества и поля.
В настоящее время принято считать что все взаимодействия осуществляются посредством сил:
а).гравитационные
б).магнитные
в)Ядерные
Поле на ряду с веществом является одной из форм существования материи. Это наука наиболее общих форм превращения материи.
Материя — окружающие нас тела вместе с создаваемыми ими полями.
1)окр нас тела — вещества состоящие из мельчайших частиц:элементарные частицы.
2)поле окр нас — гравитационное и электромагн.
Основное св-во материи: она всегда находится в непрерывном движении, причем под движением подразумевается любое изменение состояния системы.
Простейшая форма движения материи — механическое движение — процесс изменения положения тела в пространстве с течением времени.
Пространство и время — основные формы сущ-я материи.
Механическое движение – это изменение с течением времени взаимного расположения тел или его частей.
Для описания движения выбирают тело отсчета – это произвольны выбор тела относительно которых определяется положение других движущихся тел.
Система координат – это система связанная с телом отсчета (в противном случае декартовая система координата)
Понятие вектора относится к величинам, численное значение которых зависит от направления действия или движения. Это перемещение, скорость, ускорение, сила, импульс, сила тока .
2. Кинематика поступательного движения. Прямая и обратная задачи кинематики.
Кинематика изучает движение тел, не рассматривая причин этого движения.
Поступательное движение – это движение, при котором любая прямая линия, связанная с телом остается параллельной сама себе.
Исторически деление на прямую и обратную задачу динамики сложилось следующим образом.
Прямая задача динамики: по заданному характеру движения определить равнодействующую сил, действующих на тело.
Обратная задача динамики: по заданным силам определить характер движения тела.
При поступательном движении тела все точки тела движутся одинаково, и, вместо того чтобы рассматривать движение каждой точки тела, можно рассматривать движение только одной его точки.
Основные характеристики движения материальной точки: траектория движения, перемещение точки, пройденный ею путь, координаты, скорость и ускорение.
Линию, по которой движется материальная точка в пространстве, называют траекторией.
Перемещением материальной точки за некоторый промежуток времени называется вектор перемещения ∆r=r-r0, направленный от положения точки в начальный момент времени к ее положению в конечный момент.
Скорость материальной точки представляет собой вектор, характеризующий направление и быстроту перемещения материальной точки относительно тела отсчета. Вектор ускорения характеризует быстроту и направление изменения скорости материальной точки относительно тела отсчета.