
- •1. Предмет и значение материаловедения
- •2. Черные и цветные металлы
- •3. Типы кристаллических решеток
- •4. Дефекты в кристаллах
- •5. Анизотропия кристаллов
- •6. Кристаллизация металлов
- •7. Строение механического слитка
- •8. Физические свойства металлов
- •9. Химические свойства металлов
- •10. Основные механические свойства металлов
- •12. Твердость, усталость, выносливость
- •13. Испытания на ударную вязкость, усталостную прочность, ползучесть
- •14. Технологические и эксплуатационные свойства
- •15. Нагрев металлов при обработке давлением
- •16. Основные сведения о сплавах
- •17. Диаграмма состояний для случая неограниченной растворимости компонентов в твердом состоянии
- •18. Диаграмма состояний сплавов, образующих механические смеси из чистых компонентов
- •19. Диаграмма состояния сплавов для случая ограниченной
- •20. Диаграмма состояния сплавов, образующих химические соединения
- •21. Структурные составляющие
- •22. Диаграмма состояния «железо - цементит»
- •23. Диаграмма состояния «железо-графит»
- •24. Продукция черной металлургии
- •25. Способы литья
- •26. Влияние компонентов на свойства чугуна
- •27. Белый и серый чугун
- •28. Высокопрочный чугун
- •29. Ковкий чугун
- •30. Чугуны со специальными свойствами
- •31. Стали, их классификация
- •32. Способы получения стали из чугуна
- •33. Влияние углерода на свойства углеродистых сталей
- •34. Влияние постоянных примесей на свойства углеродистых сталей
- •35. Стали углеродистые обыкновенного качества
- •36. Стали углеродистые качественные конструкционные
- •37. Влияние легирующих элементов. Маркировка легированных сталей
- •38. Цементуемые, улучшаемые и высокопрочные стали
- •39. Углеродистые инструментальные стали
- •40. Легированные инструментальные стали
- •41. Коррозионно-стойкие стали
- •42. Жаростойкие и жаропрочные стали
- •43. Магнитные и магнитно-мягкие стали и сплавы
- •44. Износостойкие стали. Сплавы с высоким электрическим сопротивлением, с заданным коэффициентом теплового расширения и заданными упругими свойствами
- •45. Методы получения высококачественной стали
- •46. Понятие термической обработки
- •47. Превращения в стали при нагреве
- •48. Превращения в стали при охлаждении
- •49. Аустенитно-мартенситное превращение
- •50. Отжиг
- •51. Закалка
- •52. Виды закалки
- •53. Отпуск
- •54. Нормализация. Дефекты при обжиге и нормализации
- •55. Термомеханическая обработка стали
- •56. Химико-термическая обработка
- •Азотирование
- •58. Поверхностное упрочнение стали
- •59. Особенности термической обработки легированных сталей
- •60. Термообработка серого и белого чугуна
- •61. Получение алюминия
- •62. Деформируемые алюминиевые сплавы
- •63. Литейные алюминиевые сплавы
- •64. Получение меди и ее сплавов
- •65. Латунь
- •66. Бронзы, сплавы меди с никелем
- •67. Получение, свойства и применение титана и магния
- •68. Олово, свинец, цинк и их сплавы
- •69. Антифрикционные сплавы
- •70. Тугоплавкие металлы и сплавы
- •71. Методы получения порошков
- •72. Формирование заготовок и изделий
- •73. Твердые сплавы
- •74. Металлокерамика
- •75. Минералокерамические твердые сплавы
- •76. Пористая и компактная металлокерамика
- •77. Строение и структура пластических масс
- •78. Классификация пластмасс
- •79. Полиэтилен, поливинилхлорид
- •80. Полиамиды и полистирол
- •82. Поликарбонаты, пенопласт и полиимиды
- •83. Газонаполненные и фольгированные пластмассы
- •84. Резиновые материалы
- •85. Клеи
- •86. Виды лакокрасочных материалов
- •87. Древесные материалы
- •88. Прокладочные, уплотнительные и изоляционные материалы
- •89. Минеральная вата и графитоугольные материалы
- •90. Композиционные материалы
- •95. Чугунное, стальное литье, литье цветных металлов
- •96. Литье в кокиль, литье под давлением
- •97. Центробежное литье, непрерывное и полунепрерывное литье
- •98. Электрошлаковое литье, литье вакуумным всасыванием и выжиманием
- •99. Пластическая деформация
- •100. Прокатка
- •101. Волочение, прессование
- •102. Ковка
- •103. Горячая штамповка
- •104. Электрогидравлическая, холодная штамповка, штамповка взрывом
- •105. Назначение и применение сварки
- •106. Дуговая и газовая сварка
- •107. Плазменная, электронно-лучевая, лазерная сварка
- •108. Сварка давлением и другие виды сварки
- •109. Резка металлов
- •110. Пайка металлов
- •111. Основы резания металлов
- •112. Геометрия режущего инструмента
- •113. Углы заточки и углы режущей части
- •114. Сила и скорость резания
- •115. Выбор режимов резания и время обработки
- •116. Обработка на токарных станках
- •117. Обработка на сверлильных и расточных станках
- •118. Обработка на фрезерных станках
- •119. Обработка на строгальных, долбежных и протяжных станках
- •120. Процесс и методы шлифования
- •121. Шлифовальные, заточные и отделочные станки
- •122. Электрофизические способы обработки металлов
- •123. Электрохимические способы обработки металлов
46. Понятие термической обработки
Термической обработкой называют технологические процессы теплового воздействия, состоящие из нагрева, выдержки и охлаждения металлических изделий по определенным режимам с целью изменения структуры и свойств сплава.
Любой процесс термической обработки может быть описан графиком в координатах «температура — время». Параметрами процесса термической обработки являются: 1) максимальная температура нагрева (tmax) сплава; 2) время выдержки (τтах) сплава при температуре нагрева; 3) скорость нагрева (vн) и охлаждения (v0).
В основе теории термической обработки лежат фазовые и структурные превращения, протекающие при нагреве и охлаждении металлов и сплавов. Эти превращения характеризуются определенными критическими точками. При медленном нагреве от комнатной температуры до 727 оС в сплаве I фазовых изменений не происходит (см. рис. в вопросе 47).
При температуре 727 оС перлит превращается в аустенит (точка а). Точку а на диаграмме называют нижней критической точкой и обозначают Ас1 (при охлаждении — Аr1. Буквы с и r указывают на то, что превращение происходит соответственно при нагреве или охлаждении стали, а индекс единица внизу этих букв — на точки, образующие линию PSK. При дальнейшем нагреве сплава зерна феррита растворяются в аустените. Растворение аустенита заканчивается в точке а (линия GS), которую называют верхней критической точкой и обозначают при нагреве Ас3, охлаждении — Аr3.
Если нагревать эвтектоидный сплав II, то перлит в точке S (линия PSK) при 727 оС превращается в аустенит. Критические точки Ас1, и Ас3 при этом совпадают. Перлит сплава III при 727 оС превращается в аустенит (точка b).
Дальнейший нагрев сплава III вызывает растворение цементита (вторичного) в аустените. В точке b1, лежащей на линии SB, процесс растворения заканчивается. Эту точку обозначают Асm. Таким образом, на диаграмме «железо — цементит» критические точки, образующие линию PSK, обозначают Ас1 (при нагреве) и Аr1 (при охлаждении), точки по линии GS — Ас3 и Аr3, по линии SE — Асm.
47. Превращения в стали при нагреве
Нагрев стали при термической обработке используют для получения аустенита.
Структура доэвтектоидной стали при нагреве ее до нижней критической точки при охлаждении (Ас1) состоит из зерен перлита и феррита (см. рисунок). В точке Ас1 происходит превращение перлита в мелкозернистый аустенит. Образовавшийся аустенит неоднороден даже в объеме одного зерна. В тех местах, где раньше были пластинки цементита, содержание углерода значительно больше, чем в тех местах, где находились пластинки феррита. Для выравнивания химического состава и получения однородного аустенита доэвтектоидную сталь нагревают немного выше верхней критической точки Aс3 и выдерживают некоторое время при этой температуре для завершения диффузионных процессов. По окончании процесса превращения перлита в аустенит образуется большое количество мелких аустенитных зерен. Эти зерна называют начальными зернами аустенита.
Дальнейший нагрев стали или увеличение выдержки приводят к росту аустенитного зерна. Зерно, полученное в стали в результате той или иной термической обработки, называют действительным зерном.
Но склонность к росту аустенитных зерен с повышением температуры нагрева различна. Стали, раскисленные в процессе плавки кремнием и марганцем, обладают большой склонностью к непрерывному росту зерен аустенита при повышении температуры. Такие стали называют наследственно крупнозернистыми. К ним относят кипящие стали.
От размера
действительного зерна зависят механические
свойства стали, главным
образом ударная вязкость. Она значительно
понижается с увеличением размера зерна.
Размер действительного зерна стали
зависит от размера зерна аустенита.
Размер наследственного зерна оказывает
влияние на технологические свойства
стали. Если сталь наследственно
мелкозернистая, то ее можно нагревать
до более высокой температуры. Горячую
обработку давлением — прокатку, ковку,
объемную штамповку наследственно
мелкозернистой стали — начинают и
оканчивают при более высокой температуре,
не опасаясь получения крупнозернистой
структуры. Для определения размера
наследственного (аустенитного) зерна
применяют различные методы.