Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матвед краткий курс.doc
Скачиваний:
48
Добавлен:
26.04.2019
Размер:
869.89 Кб
Скачать

42. Жаростойкие и жаропрочные стали

Взаимодействие металла с окружающей средой при повышении температуры вызывает газовую коррозию (окисление) и разрушение материала. Для изготовления деталей, работающих в условиях повышенной температуры (400—900 оС) и окисления в газовой среде, применяют специальные жаростойкие стали.

Под жаростойкостью (или окалиностойкостью) понимают способность материала противостоять коррозионному разрушению при высоких температурах.

К жаростойким относят стали, содержащие алюминий, хром, кремний. Они не образуют окалины при высоких температурах. Например, хромистая сталь, содержащая 30% Сr, устойчива при температуре до 1200 оС. Введение небольших добавок алюминия резко повышает жаростойкость хромистых сталей. Стойкость таких материалов при высоких температурах объясняется образованием на их поверхности плотных защитных пленок, состоящих из оксидов легирующих элементов (хрома, алюминия, кремния).

Область применения жаростойких сталей:

  1. изготовление различных деталей нагревательных устройств;

  2. изготовление энергетических установок.

Так, клапаны двигателей внутреннего сгорания изготавливают из стали 40Х9С2 с рабочей температурой не более 850 оС, а сопловые аппараты и жаровые трубы газотурбинных установок — из стали 36X18Н25С2 с максимальной рабочей температурой 1100 оС.

Для изготовления деталей машин, длительное время работающих при больших нагрузках и высоких температурах (500— 1000 оС), применяют специальные жаропрочные стали. Жаропрочность — способность материала выдерживать механические нагрузки без существенных деформаций при высоких температурах. К числу жаропрочных относят стали, содержащие хром, кремний, молибден, никель и др. Они сохраняют свои прочностные свойства при нагреве до 650 оС и более. Из таких сталей изготовляют греющие элементы теплообменной аппаратуры, детали котлов, впускные и выпускные клапаны автомобильных и тракторных двигателей.

43. Магнитные и магнитно-мягкие стали и сплавы

Магнитнотвердые стали и сплавы применяются для изготовления постоянных магнитов; имеют большую коэрцитивную силу. Это высокоуглеродистые и легированные стали, специальные сплавы. Углеродистые стали (У10-У12) после закалки имеют достаточную коэрцитивную силу (Нс = 5175 А/м), но так как они прокаливаются на небольшую глубину, их применяют для изготовления небольших магнитов. Хромистые стали по сравнению с углеродистыми прокаливаются значительно глубже, поэтому из них изготовляют более крупные магниты. Магнитные свойства этих сталей такие же, как и углеродистых. Хромокобальтовые стали (например, марки ЕХ5К5) имеют более высокую коэрцитивную силу — Нс = 7166 А/м. Магнитные сплавы, например ЮНДК24 (9% Al, 13,5% Ni; 3% Сu; 24% Со; остальное железо), имеют очень высокую коэрцитивную силу — Нc = 39810 А/м, поэтому из них изготовляют магниты небольшого размера, но большой мощности.

Магнитно-мягкие стали и сплавы имеют малую коэрцитивную силу и большую магнитную проницаемость. К ним относят электротехническое железо и сталь, железоникелевые сплавы (пермаллои).

Электротехническое железо (марок Э, ЭА, ЭАА) содержит менее 0,04% С, имеет высокую магнитную проницаемость μ = (2,78/3,58)х109 ГГн/м и применяется для сердечников, полюсных наконечников электромагнитов и др.

Электротехническая сталь содержит менее 0,05% С и кремний, сильно увеличивающий магнитную проницаемость. Электротехническую сталь по содержанию кремния делят на четыре группы: с 1% Si — марки Э11, Э12, Э13; с 2% Si - Э21, Э22; с 3% Si - Э31, Э32; с4% Si — Э41—Э48. Вторая цифра (1—8) характеризует уровень электротехнических свойств.

Железоникелевые сплавы (пермаллои) содержат 45—80% Ni, их дополнительно легируют Cr, Si, Mo. Магнитная проницаемость этих сплавов очень высокая. Например, у пермаллоя марки 79НМ (79% Ni; 4% Мо) μ = 175,15 х 109 ГГн/м. Применяют пермаллои в аппаратуре, работающей в слабых электромагнитных полях (телефоне, радио).

Ферриты — магнитно-мягкие материалы, получаемые спеканием смеси порошков ферромагнитной окиси железа Fe2O3, и окислов двухвалентных металлов (ZnO, NiO, MgО и др.). В отличие от других магнитно-мягких материалов у ферритов очень высокое удельное электросопротивление, что определяет их применение в устройствах, работающих в области высоких и сверхвысоких частот.