
- •Кафедра «Инженерная химия и естествознание»
- •Методические указания
- •Часть 2
- •Химия растворов
- •Растворимость
- •Способы выражения концентрации.
- •Осмотический закон Вант-Гоффа.
- •Закон Генри.
- •Растворы электролитов.
- •Закон разбавления Оствальда.
- •Сильные электролиты.
- •Правила написания ионных уравнений
- •Условия протекания реакций в растворах до конца
- •Вода. Водородный показатель.
- •Теория кислот и оснований.
- •Произведение растворимости
- •Гидролиз.
- •Амфотерность
- •Жесткость природных вод
- •Способы устранения жесткости.
- •Методы получения дисперсных систем
- •Некоторые константы и величины
- •Приложение 5 Электронные потенциалы
- •Приложение 6 Произведение растворимости (пр) труднорастворимых
Амфотерность
Амфотерными называются электролиты, дающие при диссоциации в воде в зависимости от условий ионы водорода (Н+) или гидроксила (ОН-).
Примерами амфотерных электролитов могут служить как растворимые в воде (аминокислоты), так и нерастворимые (гидраты окислов некоторых элементов).
Для аминокислот и некоторых других органических электролитов причиной амфотерности является наличие, по крайней мере, двух различных функциональных групп, одна из которых проявляет кислотные свойства, а другая - основные.
Для гидратов окислов причина амфотерности другая. В их составе всегда можно выделить группировку:
Э-О-Н, 1.57
где Э – элемент, О - кислород, Н – водород.
В зависимости от соотношения энергий связи О-Н и О-Э, могут реализоваться три варианта:
энергия связи О –Н прочнее, чем для связи Э – О
энергия связи О –Н примерно такая же как и для связи Э –О
энергия связи О –Н слабее, чем для связи Э –О
В первом случае гидрат окисла является основанием, в третьем – кислотой, а во втором проявляет амфотерные свойства.
В начале любого периода всегда реализуется первый вариант, и все гидраты окислов являются типичными основаниями. В конце любого периода реализуется третий вариант, и все гидраты окислов являются типичными кислотами. Где-то ближе к середине периода ( в разных периодах это происходит по разному) реализуется второй вариант.
Для второго периода это происходит уже у Ве, в третьем – у Al, в четвертом – у Zn, Ga и Ge, в пятом у In и Sn, в шестом у Pb.
Однако существует и другая возможность, реализующаяся у переходных элементов. Для тех из них, которые могут реализовать несколько валентных состояний, в низших валентных состояниях реализуется первый вариант, а в высших, когда валентность элемента 5 и выше, реализуется третий вариант. В средних же валентных состояниях они проявляют амфотерные свойства. В первой вставной декаде амфотерные свойства проявляют Ti и V, в четырех валентном состоянии, Cr, в трех валентном состоянии, Mn, в четырех валентном состоянии. У элементов второй и третьей вставных декадах явного проявления амфотерных свойств не обнаружено.
Соответственно этому амфотерные гидроксиды в кислой среде выступают в качестве оснований, а в щелочной – кислот. Однако взаимодействие амфотерного гидроксида со щелочью дает разные продукты в зависимости от того, проводится ли реакция в растворе или путем сплавления (в твердом виде). Формы получающихся продуктов (анионы) приведены в таблице 4 в общем виде.
Табл. 4.
Формы анионов амфотерных гидроксидов при взаимодействии со щелочами.
Валентное |
Форма существования аниона: |
|
состояние элемента |
в растворе |
в твердом виде |
Э(II) |
|
|
Э(III) |
|
|
Э(IV) |
|
|
Пример 15. Напишите уравнения реакций взаимодействия Al(OH)3 с растворами H2SO4 и NaOH в молекулярной и ионной форме.
РЕШЕНИЕ. Уравнения взаимодействия с серной кислотой имеют вид:
Взаимодействие с NaOH протекает так: