
- •Влияние температуры
- •Влияние концентрации
- •Ядро атома
- •Изотопы
- •Характерные кристаллические решётки
- •15. Растворы
- •Значение понятия
- •Понижение температуры кристаллизации растворов
- •[Править]Повышение температуры кипения растворов
- •19. Гидролиз
- •Степень гидролиза
- •20. Гидролиз солей многоосновных кислот и оснований
- •22. Понятие о протолизе
- •Вывод значения ионного произведения воды
- •Реакция ионного обмена — одна из видов химической реакции, характеризующаяся выделением в продукты реакции воды, газа илиосадка. Изображение реакций ионного обмена
- •Правила написания реакций двойного обмена
- •2. Если в результате реакции выделяется нерастворимое в воде вещество.
- •3. Если в результате реакции выделяется газообразное вещество.
- •Реакция нейтрализации
- •24. Виды окислительно-восстановительных реакций
- •[Править]Вывод уравнения Нернста
- •Первый закон Фарадея
- •Вывод закона Фарадея
- •Второй закон Фарадея
Первый закон Фарадея
Основная статья: Законы электролиза Фарадея
В 1832 году Фарадей установил,
что масса m вещества, выделившегося на
электроде, прямо пропорциональна
электрическому заряду q, прошедшему
через электролит:
если
через электролит пропускается в течение
времени t постоянный ток с силой тока
I. Коэффициент
пропорциональности
называетсяэлектрохимическим
эквивалентом вещества.
Он численно равен массе вещества,
выделившегося при прохождении через
электролит единичного электрического
заряда, и зависит от химической природы
вещества.
Вывод закона Фарадея
(1)
(2)
(3)
(4)
,
где z — валентность атома (иона)
вещества, e — заряд
электрона (5)
Подставляя (2)-(5) в (1), получим
где
— постоянная
Фарадея.
Второй закон Фарадея
Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.
Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент
где — постоянная Фарадея.
Второй закон Фарадея записывается в следующем виде:
где
— молярная
масса данного
вещества, образовавшегося (однако не
обязательно выделившегося — оно
могло и вступить в какую-либо реакцию
сразу после образования) в результате
электролиза, г/моль;
— сила
тока,
пропущенного через вещество или смесь
веществ (раствор, расплав), А;
—
время, в течение которого проводился
электролиз, с;
— постоянная
Фарадея, Кл·моль−1;
—
число участвующих в процессе электронов,
которое при достаточно больших значениях
силы тока равно абсолютной величине
заряда иона (и его противоиона), принявшего
непосредственное участие в электролизе
(окисленного или восстановленного).
Однако это не всегда так; например, при
электролизе раствора соли меди(II) может
образовываться не только свободная
медь, но и ионы меди(I) (при небольшой
силе тока).
33. Полимеры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинныемакромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.
В химии олигомер (греч. ολιγος — малый, немногий, незначительный; μέρος - часть) — молекула в виде цепочки из небольшого числа одинаковых составных звеньев. Этим олигомеры отличаются от полимеров, в которых число звеньев теоретически не ограничено. Верхний предел молекулярной массы олигомера зависит от его химических свойств. Свойства олигомеров сильно зависят от изменения количества повторяющихся звеньев в молекуле и природы концевых групп; с момента, когда химические свойства перестают изменяться с увеличением длины цепочки, вещество называется полимером.
Молекулы, способные образовывать цепочки в результате реакции полимеризацииназываются мономерами. При олигомеризации химический процесс формирования цепочки из мономеров протекает только до достижения определенной степени полимеризации (обычно в пределах от 10 до 100).