Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpora_stat.doc
Скачиваний:
10
Добавлен:
24.04.2019
Размер:
607.23 Кб
Скачать

53 Выборочное наблюдение: понятие, значение, характеристики

Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации. Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части, организованной по принципу случайного отбора. При случайном отборе каждой единице изучаемого объекта (массового явления, генеральной совокупности) обеспечивается определенная (обычно равная) вероятность попасть в количество обследуемых единиц (в выборку) и тем самым исключается субъективность, тенденциозность и односторонность в подборе этих единиц. При строгом соблюдении принятых правил отбора выборочное наблюдение репрезентативно в широком смысле слова: при нем обеспечивается близкое соответствие состава охваченной наблюдением выборки и состава генеральной совокупности. Благодаря этому по данных выборочного наблюдения можно определить с желательной степенью приближения интересующие исследователей характеристики изучаемого явления. Выборочный метод при проведении ряда исследований является единственно возможным, например, при контроле качества продукции (товара). Выборочный метод иногда применяется для проверки данных даже сплошного учета. Минимальная численность обследуемых единиц позволяет провести исследование более тщательно и квалифицированно. Так, при переписи населения практикуются выборочные контрольные обходы для проверки правильности записей сплошного наблюдения. Большую актуальность приобретает выборочный метод в условиях перехода к рыночной экономике. Развитие различных форм собственности, изменения в характере экономических отношений, как указывалось в предыдущих лекциях, обусловливают изменения функций учета и статистики, сокращение и упрощение статистической отчетности. По сравнению с другими методами, применяющими не сплошное наблюдение, выборочный метод имеет существенное преимущество. При соблюдении правил научной организации выборочного наблюдения появляется возможность количественной оценки ошибки репрезентативности (представительности). Более того, способы определения ошибок выборки при различных приемах формирования выборочной совокупности и распространение характеристик выборки на генеральную совокупность составляют основное содержание статистической методологии выборочного метода.

  1. Oшибка выборочного наблюдения

Собственно-случайная выборка основывается на отборе единиц из генеральной совокупности наугад без каких-либо элементов системности. Технически собственно-случайный отбор проводят методом жеребьевки (например, розыгрыши лотерей) или по таблице случайных чисел. Собственно-случайный отбор «в чистом виде» в практике выборочного наблюдения применяется редко, но он является исходным среди других видов отбора, в нем реализуются основные принципы выборочного наблюдения. Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Ошибка выборочного наблюдения – это разность между величиной параметра в генеральной совокупности, и его величиной, вычисленной по результатам выборочного наблюдения. Для средней количественного признака ошибка выборки определяется

Показатель называется предельной ошибкой выборки. Выборочная средняя является случайной величиной, которая может принимать различные значения в зависимости от того, какие единицы попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки , которая зависит от:

объема выборки: чем больше численность, тем меньше величина средней ошибки;

степени изменения изучаемого признака: чем меньше вариация признака, а, следовательно, и дисперсия, тем меньше средняя ошибка выборки.

При случайном повторном отборе средняя ошибка рассчитывается .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]