Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6_Nepreryvnaya_i_diskretnaya_formy_predstavleni....doc
Скачиваний:
3
Добавлен:
24.04.2019
Размер:
468.48 Кб
Скачать

6. см. т. Непрерывная и дискретная формы представления информации. Различают две формы представления информации — непрерывную и дискретную. Чтобы сообщение было передано от источника к получателю, необходима некоторая материальная субстанция – носитель информации. Сообщение, передаваемое с помощью носителя, назовем сигналом. В общем случае сигнал – это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики (например, при передаче электрических сигналов могут изменяться напряжение и сила тока). Та из характеристик, которая используется для представления сообщений, называется параметром сигнала. В случае когда параметр сигнала принимает последовательное во времени конечное число значений (при этом все они могут быть пронумерованы), сигнал называется дискретным, а сообщение, передаваемое с помощью таких сигналов -дискретным сообщением. Информация, передаваемая источником, в этом случае также называется дискретной. Если же источник вырабатывает непрерывное сообщение (соответственно параметр сигнала – непрерывная функция от времени), соответствующая информация называется непрерывной. Пример дискретного сообщения – процесс чтения книги, информация в которой представлена текстом, т.е. дискретной последовательностью отдельных значков (букв). Примером непрерывного сообщения служит человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое этой волной в точке нахождения приемника – человеческого уха.

1.1 Дискретизация Дискретизация - преобразование непрерывной функции в дискретную. Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал. Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Возможность точного воспроизведения такого представления зависит от интервала времени между отсчётами Δt. Согласно теореме Котельникова:

где   - наибольшая частота спектра сигнала.

7. см. т. Формат графического файла  способ представления и расположения графических данных на внешнем носителе Растровые форматы: BMP, ECW, GIF, ICO, ILBM, JPEG, JPEG 2000, VIL, MrSID, PCX, PNG, PSD, TGA, TIFF, HD Photo, WebP, XBM, XPS, RLA, RPF Векторные форматы 2D: Scalable Vector Graphics (SVG и SVGZ), Encapsulated PostScript (EPS), Метафайлы Windows: WMF, EMF, Файлы CorelDraw: →CDR, CMX, Adobe Illustrator (AI), XAR 3D: COLLADA — формат, разработанный для обмена между 3D приложениями., SKP, STL - A stereolithography format., U3D - Universal 3D file format, VRML -- Virtual Reality Modeling Language, X3D, .3ds, 3DXML, Формат X файла Комплексные форматы: DjVu, PDF, CGM

8 Структура данных — программная единица, позволяющая хранить и обрабатывать множество однотипных и/или логически связанных данных ввычислительной технике. Для добавления, поиска, изменения и удаления данных структура данных предоставляет некоторый набор функций, составляющих её интерфейс. Структура данных часто является реализацией какого-либо абстрактного типа данных. При разработке программного обеспечения большую роль играет проектирование хранилища данных и представление всех данных в виде множества связанных структур данных. Хорошо спроектированное хранилище данных оптимизирует использование ресурсов (таких как время выполнения операций, используемый объём оперативной памяти, число обращений к дисковым накопителям), требуемых для выполнения наиболее критичных операций. Структуры данных формируются с помощью типов данных, ссылок и операций над ними в выбранном языке программирования. Различные виды структур данных подходят для различных приложений; некоторые из них имеют узкую специализацию для определённых задач. Например, B-деревья обычно подходят для создания баз данных, в то время как хеш-таблицы используются повсеместно для создания различного рода словарей, например, для отображения доменных имён в интернет-адреса компьютеров. При разработке программного обеспечения сложность реализации и качество работы программ существенно зависит от правильного выбора структур данных. Это понимание дало начало формальным методам разработки и языкам программирования, в которых именно структуры данных, а не алгоритмы, ставятся во главу архитектуры программного средства. Большая часть таких языков обладает определённым типом модульности, позволяющим структурам данных безопасно переиспользоваться в различных приложениях. Объектно-ориентированные языки, такие как Java, C# и C++, являются примерами такого подхода. Многие классические структуры данных представлены в стандартных библиотеках языков программирования или непосредственно встроены в языки программирования. Например, структура данных хэш-таблица встроена в языки программирования Lua, Perl, Python, Ruby, Tcl и др. Широко используется стандартная библиотека шаблонов STL языка C++. Фундаментальными строительными блоками для большей части структур данных являются массивы, записи (см. конструкцию struct в языке Си и конструкцию record в языке Паскаль),размеченные объединения (см. конструкцию union в языке Си) и ссылки. Например, структура данных двусвязный список, может быть построена с помощью записей и зануляемых ссылок, а именно, каждая запись будет предоставлять блок данных (узел, node), содержащий ссылки на «левый» и «правый» узлы, а также сами хранимые данные. Сеть хранения данных, СХД (англ. Storage Area Network, SAN) — представляет собой архитектурное решение для подключения внешних устройств хранения данных, таких как дисковые массивы, ленточные библиотеки, оптические приводы к серверам таким образом, чтобы операционная система распознала подключённые ресурсы как локальные. Несмотря на то, что стоимость и сложность таких систем постоянно падают, по состоянию на 2007 год сети хранения данных остаются редкостью за пределами больших предприятий. SAN характеризуются предоставлением так называемых сетевых блочных устройств (обычно посредством протоколов Fibre Channel, iSCSI или AoE), в то время как сетевые хранилища данных (англ. Network Attached Storage, NAS) нацелены на предоставление доступа к хранящимся на их файловой системе данным при помощи сетевой файловой системы (такой как NFS,SMB/CIFS, или AppleTalk). Следует обратить внимание, что категорическое разделение вида «SAN — это только сетевые диски, NAS — это только сетевая файловая система» является искусственным: с появлением iSCSI началось взаимное проникновение технологий с целью повышения гибкости и удобства их применения. Например, в 2003 году NetApp уже предоставляли iSCSI на своих NAS, а EMCи HDS — наоборот, предлагали NAS-фронтэнды для своих SAN-массивов[1].

9 Сжатие данных (англ. data compression) — алгоритмическое преобразование данных, производимое с целью уменьшения их объёма. Применяется для более рационального использования устройств хранения и передачи данных. Синонимы — упаковка данных, компрессия, сжимающее кодирование, кодирование источника. Обратная процедура называется восстановлением данных (распаковкой, декомпрессией). Сжатие основано на устранении избыточности, содержащейся в исходных данных. Простейшим примером избыточности является повторение в тексте фрагментов (например, слов естественного или машинного языка). Подобная избыточность обычно устраняется заменой повторяющейся последовательности ссылкой на уже закодированный фрагмент с указанием его длины. Другой вид избыточности связан с тем, что некоторые значения в сжимаемых данных встречаются чаще других. Сокращение объёма данных достигается за счёт замены часто встречающихся данных короткими кодовыми словами, а редких — длинными (энтропийное кодирование). Сжатие данных, не обладающих свойством избыточности (например, случайный сигнал или шум, зашифрованные сообщения), принципиально невозможно без потерь.

Основные методы сжатия данных без потерь

 

Методы сжатия данных без потерь информации основаны на устранении избыточности представления информации. Экономное кодирование достигается за счет представления маловероятных событий более длинными словами, чем событий с высокой вероятностью наступления. Если вероятность наступления события равна Р, то, в соответствии с теоремой Шеннона о кодировании источника информации, такое событие выгоднее всего кодировать словом длиною –log2p битов. Методы сжатия данных явно или неявно опираются на этот факт.

В результате процесса экономного кодирования единице исходных данных (символу, слову, строке, числу и т. п.) ставится в соответствие так называемое кодовое слово. Кодовое слово состоит из последовательности цифр, обычно двоичных. Совокупность всех кодовых слов образует код. Если длины всех кодовых слов одинаковые, то используемый код имеет фиксированную (постоянную) длину, иначе – переменную. Если исходные данные могут быть однозначно восстановлены по массиву соответствующих кодовых слов, то кодирование не приводит к потере информации, т. е. является безущербным, без потерь.

Эффективность сжатия как характеристика сокращения размера представления информации относительно исходного будет в данном обзоре определяться степенью сжатия. Степень сжатия принимается равной отношению объема исходных данных к объему соответствующих им сжатых данных и измеряется в разах.

Все методы сжатия принято разделять на два класса: методы статистического кодирования и методы словарного сжатия. В схемах сжатия также часто используются вспомогательные преобразования, обеспечивающие или способствующие выполнению этапа экономного кодирования.

10 см.т. Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени. Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка, механический арифмометр, электронный компьютер. Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека. Ранние приспособления и устройства для счёта 1804: появление перфокарт 1835—1900-е: первые программируемые машины 1930-е — 1960-е: настольные калькуляторы Появление аналоговых вычислителей в предвоенные годы

12

 

С середины 60-х годов существенно изменился подход к созданию вычислительных машин. Вместо независимой разработки аппаратуры и некоторых средств математического обеспечения стала проектироваться система, состоящая из совокупности аппаратных (hardware) и программных (software) средств. При этом на первый план выдвинулась концепция их взаимодействия. Так возникло принципиально новое понятие — архитектура ЭВМ.

Под архитектурой ЭВМ понимается совокупность общих принципов организации аппаратно-программных средств и их характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих классов задач.

Классическая архитектура ЭВМ. Принципы фон Неймана. Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман (1903-1957). Он подключился к созданию первой в мире ламповой ЭВМ "ЭНИАК" в 1944 году, когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г.Голдстайном и А.Берксом, фон Нейман высказал идею принципиально новой ЭВМ. В 1946 году ученые изложили свои принципы построения вычислительных машин в ставшей классической статье "Предварительное рассмотрение логической конструкции электронно-вычислительного устройства". С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел (нелишне напомнить, что ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде). Авторы убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации: текстовую, графическую, звуковую и другие. Но по-прежнему двоичное кодирование данных составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип "хранимой программы". Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы "ЭНИАК" требовалось несколько дней (в то время как собственно расчет не мог продолжаться более нескольких минут - выходили из строя лампы). Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ей числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течении первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяются в центральный процессор), память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, клавиатура - устройство ввода, а дисплей и печать - устройства вывода.

Рис.1 Архитектура ЭВМ, построенная на принципах фон Неймана. Стрелки указывают направление обмена. Символом "У" помечены управляющиесвязи между процессором и остальными узлами ЭВМ.

 

Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок - процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств. Сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных (в том числе и арифметических) операций, согласование работы узлов компьютера. Более детально функции процессора будут обсуждаться ниже. Память (ЗУ) хранит информацию (данные) и программы. ЗУ у современных компьютеров "многоярусно" и включает:

  • ОЗУ (оперативное запоминающее устройство), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы),

  • ВЗУ (внешние запоминающие устройства) гораздо большей емкости чем ОЗУ, но с гораздо более медленным доступом (и гораздо меньшей стоимостью в расчете на 1 байт хранимой информации).

  •  ПЗУ (постоянное запоминающее устройство).

На ОЗУ и ВЗУ классификация устройств памяти не заканчивается - определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство) существуют и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством - счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название "фон-неймановской архитектуры". Подавляющее большинство вычислительных машин на сегодняшний день - это фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели. Примером могут служить потоковая и редукционная вычислительные машины.

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

14

Центра́льный проце́ссор (ЦП, или центральное процессорное устройство — ЦПУ; англ. central processing unit, сокращенно — CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо микросхема — исполнитель машинных инструкций (кода программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором. Изначально термин центральное процессорное устройство описывал специализированный класслогических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковыхэлементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Постоянное запоминающее устройство (ПЗУ)

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Постоянная память (ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом "зашивается" в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

Перепрограммируемая постоянная память (Flash Memory) — энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

Важнейшая микросхема постоянной или Flash-памяти — модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой строны — важный модуль любой операционной системы.

BIOS (Basic Input/Output System — базовая система ввода-вывода) — совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера  и  загрузки операционной системы в оперативную память.

Разновидность постоянного ЗУ — CMOS RAM.

CMOS RAM — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.

Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Set-up — устанавливать, читается "сетап").

Для хранения графической информации используется видеопамять.

Видеопамять (VRAM) — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.

Вверх

Оперативная память (ОЗУ)

Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается, все, что находилось в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой — это означает, что каждый байт памяти имеет свой индивидуальный адрес.

Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

Обычно ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за токов утечки такие конденсаторы быстро разряжаются, и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (Refresh Memory).  Микросхемы SDRAM имеют ёмкость 16 — 256 Мбит и более. Они устанавливаются в корпуса и собираются в модули памяти.

Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-line Memory Module — модуль памяти с двухрядным расположением микросхем).  В компьютерных системах на самых современных процессорах используются высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM.

Модули памяти характеризуются такими параметрами, как объем —(16, 32, 64, 128, 256 или 512 Мбайт), число микросхем, паспортная частота(100 или 133 МГц), время доступа к данным (6 или 7 наносекунд) и число контактов (72, 168 или 184).   В 2001 г. начинается выпуск модулей памяти на 1 Гбайт и опытных образцов модулей на 2 Гбайта.

      Кэш-память

Кэш (англ. cache), или сверхоперативная память — очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.

Кэш-памятью управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM  (SDRAM).   Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

Шина процессора соединяет процессор с компонентом набора микросхем North Bridge или Memory Controller Hub. Она работает на частотах 66–200 МГц. Используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Взаимодействие шин в типичном компьютере на базе процессора Pentium (Socket 7)

Внешние запоминающие устройства. Эти устройства обеспечивают хранение больших массивов информации. Они относительно недороги, но обладают значительно меньшим быстродействием, чем устройства внутренней памяти ЭВМ. Наиболее широкое распространение получили ВЗУ на магнитных носителях (лентах и дисках).

15 Устройства ввода данных Клавиатура

Клавиатура (keyboard) – традиционное устройство ввода данных в компьютер. Клавиатурами оснащены как персональные компьютеры, так и терминалы мэйнфреймов. Клавиатура современного компьютера содержит обычно 101 или 102 клавиши, разделенные на 4 блока:

алфавитно-цифровой блок – содержит клавиши латинского и национального алфавитов, а также клавиши цифр и специальных символов;

блок управляющих клавиш;

блок расширенной цифровой клавиатуры;

блок навигации.

Компьютерная мышь

Мышь (mouse) была разработана довольно давно (в 60-х годах), но стала широко использоваться только с приходом в мир персональных компьютеров графического пользовательского интерфейса. Обычно мышь, как и клавиатура, подключается к компьютеру с помощью кабеля. Пользоваться мышью легко – вы передвигаете ее по столу, а на экране компьютера синхронно перемещается курсор. Чтобы активизировать некоторую опцию, нужно щелкнуть левой (left) клавишей мыши. С помощью мыши можно также "рисовать" на экране картинки.

Сенсорные экраны

Сенсорные экраны (touch screens) предназначены для тех, кто не может пользоваться обычной клавиатурой. Пользователь может ввести символ или команду прикосновением пальца к определенной области экрана. Сенсорные экраны используются в основном на сладах продукции, в ресторанах, супермаркетах. К примеру, в магазинах Muse Inc. (Бруклин), продающей компакт-диски, можно прослушать желаемую композицию, прикоснувшись пальцем к ее названию на экране компьютера. Слушая выбранную мелодию, вы можете одним прикосновением вызвать список других композиций исполнителя.

Устройства автоматизированного ввода информации

Устройства этого типа считывают информацию с носителя, где она уже имеется. Примерами таких систем могут служить кассовые терминалы, сканеры штрих-кодов и другие системы оптического распознавания символов. Одно из преимуществ устройств автоматизированного ввода данных состоит в том, что при их использовании исключаются некоторые ошибки, неизбежные при вводе информации с клавиатуры. Сканер штрих-кодов делает менее чем одну ошибку на 10000 операций, в то время как обученный наборщик ошибается один раз при вводе каждых 1000 строк. Основные вида устройств автоматизированного ввода информации – системы распознавания магнитных знаков, системы оптического распознавания символов, системы ввода информации на базе светового пера, сканеры, системы распознавания речи, сенсорные датчики и устройства видеозахвата. Системы распознавания магнитных знаков (Magnetic Inc Character Recognition, MICR) используются в основном в банковской сфере. В нижней части обычного банковского чека находится код, нанесенный специальными магнитными чернилами. В коде содержится номер банка, номер расчетного счета и номер чека. Система считывает информацию, преобразовывает ее в цифровую форму и передает в банк для обработки. Системы оптического распознавания символов (Optical Character Recognition, OCR) преобразуют специальным образом нанесенную на носитель информацию в цифровую форму. Наиболее широко используемые устройства этого типа – сканеры штрих-кодов (bar-code scanners), которые применяются в кассовых терминалах магазинов. Эти системы используются также в больницах, библиотеках, на военных объектах, складах продукции и в компаниях по перевозке грузов. В дополнение к данным, идентифицирующим предмет, на который нанесен штрих-код, последний может содержать информацию о времени, дате и физическом положении предмета; таким образом, можно, например, отслеживать передвижение груза. Ручные устройства распознавания информации, такие как перьевые планшеты, особенно полезны для людей, работающих в сферах сбыта продукции и сервиса – такие работники избегают "общения" с клавиатурой. Устройства перьевого ввода обычно содержат плоский экран и световое перо, похожее на шариковую ручку. Перьевые планшеты преобразуют буквы и цифры, написанные пользователем на экране, в цифровую форму, и передают эти данные в компьютер для обработки. Например, United Parcel Service (UPS), известнейшая в мире компания по доставке грузов, заменила обычные планшеты с листками бумаги, использовавшиеся водителями, на портативные перьевые планшеты. Эти устройства используются для подтверждения заказов, и передачи другой информации, необходимой для погрузки и доставки грузов. К недостаткам систем данного вида следует отнести недостаточную точность распознавания информации, написанной от руки. Сканеры (scanners) преобразуют в цифровую форму графическую информацию (рисунки, чертежи и пр.) и большие объемы текстовой информации. Системы распознавания речи (voice inputdevices) преобразуют в цифровую форму произносимые пользователем слова. Существует два режима работы подобных устройств. В режиме управления (command mode) вы произносите команды (такие как "открыть документ", "запустить программу" и т.д.), которые выполняются компьютером. В режиме диктовки (dictation mode) можно надиктовывать компьютеру любой текст. К сожалению, точность распознавания речи таких систем оставляет желать лучшего. Человеческий голос имеет множество оттенков, на точность распознавания может повлиять интонация, громкость речь, окружающий шум, даже банальный насморк. Тем не менее, работа над совершенствованием этих устройств ввода информации продолжается и, несомненно, у них большое будущее. Некоторые отделения Почтовой службы США используют системы распознавания речи для повышения эффективности труда работников, занятых упаковкой и сортировкой почтовых грузов. Вместо того чтобы вводить ZIP-код, работник произносит его, в то время как его руки заняты упаковкой. Сенсорные датчики (sensors) – это устройства для ввода в компьютер пространственной информации. Например, корпорация General Motors использует сенсоры в своих легковых автомобилях для передачи в бортовой компьютер машины данных об окружающем пространстве и маршруте. Сенсорные датчики также нашли применение в системах виртуальной реальности, игровых приставках и симуляторах. Устройства видеозахвата (video capture devices) представляют собой небольшие цифровые видеокамеры, соединенные с компьютером. Устройства видеозахвата применяются в основном в системах видеоконференций, которые получают все большее распространение. Благодаря развитию локальных сетей и Интернет, появилась возможность организовыватьвидеоконференцсвязь, находясь в любой точке планеты.