
- •Оглавление
- •Введение
- •1.Математические модели искусственных нейронных сетей [9]
- •1.1Общие сведения о структуре биологического нейрона
- •1.2 Математическая модель искусственного нейрона
- •1.3 Математическое описание нейронной сети
- •1.4 Стохастический нейрон
- •1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- •2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- •2.1 Концепции применения нейросетевых компонентов в информационных системах
- •2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- •2.3 Формирование задачника для нейросети
- •2.4 Особенности формирования нейронной сети
- •2.5 Интерпретация сигналов нейронной сети
- •2.6Управляющая программа (исполнитель)
- •2.7 Компонент учитель
- •2.8Настройка параметров нейросети.
- •2.9Оценка и коррекция нейросетевой модели
- •2.10 Конструктор нейронной сети
- •2.11 Контрастер нейросети.
- •2.12 Логически прозрачные сети, получение явных знаний
- •2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- •2.14Разработка языка описания нейроимитатора для обмена данными
- •3.Разновидности нейронных сетей [31]
- •3.1Персептрон Розенблатта.
- •3.1.1Персептрон Розенблатта.
- •3.1.2Теорема об обучении персептрона.
- •3.1.3Линейная разделимость и персептронная представляемость
- •3.2Свойства процессов обучения в нейронных сетях.
- •3.2.1Задача обучения нейронной сети на примерах.
- •3.2.2Классификация и категоризация.
- •3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- •3.3Многослойный персептрон.
- •3.3.1Необходимость иерархической организации нейросетевых архитектур.
- •3.3.2Многослойный персептрон.
- •3.3.3Обучение методом обратного распространения ошибок.
- •3.4Другие иерархические архитектуры.
- •3.4.1Звезды Гроссберга
- •3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- •3.4.3Карта самоорганизации Кохонена.
- •3.4.4Нейронная сеть встречного распространения.
- •3.5Модель Хопфилда.
- •3.5.1Сети с обратными связями
- •3.5.2Нейродинамика в модели Хопфилда
- •3.5.3Правило обучения Хебба
- •3.5.4Ассоциативность памяти и задача распознавания образов
- •3.6Обобщения и применения модели Хопфилда.
- •3.6.1Модификации правила Хебба.
- •3.6.2Матрица Хебба с ортогонализацией образов.
- •3.6.3Отказ от симметрии синапсов.
- •3.6.4Алгоритмы разобучения (забывания).
- •3.6.5Двунаправленная ассоциативная память.
- •3.6.6Детерминированная и вероятностная нейродинамика.
- •3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- •3.7Неокогнитрон Фукушимы.
- •3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- •3.7.2Неокогнитрон и инвариантное распознавание образов.
- •3.8Теория адаптивного резонанса.
- •3.8.1Дилемма стабильности-пластичности восприятия.
- •3.8.2Принцип адаптивного резонанса.
- •3.8.3Нейронная сеть aрt-1.
- •3.8.4Начальное состояние сети.
- •3.8.5Фаза сравнения.
- •3.8.6Фаза поиска.
- •3.8.7Обучение сети арт.
- •3.8.8Теоремы арт.
- •3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- •3.8.10Сети арт-2 и арт-3.
- •3.9Черты современных архитектур.
- •3.9.1Черты современных архитектур.
- •3.9.2Сегодняшний день нейронауки.
- •3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- •4.Литература и учебно-методические материалы
3.6.5Двунаправленная ассоциативная память.
Дальнейшее развитие нейросетевые архитектуры ассоциативной памяти получили в работах Барта Коско (B.Kosko, 1987). Им была предложена модель гетероассоциативной памяти, в которой запоминаяются ассоциации между парами образов. Запоминание происходит так, что при пред’явлении сети одного из образов восстанавливается второй член пары.
Запоминание образов через ассоциаций между ними весьма характерно для памяти человека. Вспоминание (воспроизведение) нужной информации может происходить путем построения цепочки ассоциаций. Так, например, наблюдая на улице столб дым из заводской трубы, вы вполне можете вспомнить, что оставили дома чайник на включенной плите.
Двунаправленная сеть в модели Коско состоит из двух слоев нейронов (слой A и слой B). Связи между слоями устроены таким образом, что каждый нейрон одного слоя связан с каждым нейроном другого слоя. Внутри слоев связи между нейронами отсутствуют, число нейронов на каждом слое может быть различным. Для запоминания предназначаются пары образов (a,b)(), =1..p. Обучение задается правилом Хебба:
Динамика системы является параллельной и происходит по формулам:
Здесь {aj}, j=1..Na - состояния активности нейронов слоя A, {bi}, i=1..Nb - слоя B. В качестве нейронной функции f может использоваться пороговая функция или сигмоид. В частном случае одинаковых слоев и одинаковых образов в обучающих парах сеть Коско полностью эквивалентна модели Хопфилда.
В процессе итерационной динамики состояния нейронов слоя A вызывают изменения состояний нейронов слоя B, те, в свою очередь, модифицируют состояния нейронов A, и так далее. Итерации, также как и в сети Хопфилда, сходятся, поскольку матрица связей симметрична. При пред’явлении сети только образа на слое A будет восстановлен также и соотвествующий образ на слое B, и наоборот.
Сеть Коско обладает также и свойством автоассоциативности: если одновременно известны некоторые фрагменты образов на слое A и B, то в процессе динамики будут одновременно восстановлены оба образа пары.
3.6.6Детерминированная и вероятностная нейродинамика.
На предыдущей лекции была рассмотрена классическая модель Хопфилда с двоичными нейронами. Изменение состояний нейронов во времени описывалось детерминированными правилами, которые в заданный момент времени однозначно определяли степень возбуждения всех нейронов сети.
Эволюция в пространстве состояний сети Хопфилда завершается в стационарной точке - локальном минимуме энергии. В этом состоянии любые изменения активности любого нейрона запрещены, так как они приводят к увеличению энергии сети. Если продолжать проводить аналогию между классической нейродинамикой и статистическими (динамическими) системами в физике, то можно ввести понятие температуры статистичекого ансамбля нейронов. Поведение сети Хопфилда соответствует нулевой температуре (полному замерзанию) статсистемы. При строго нулевой температуре (T=0) статистический Больцмановский фактор ~exp(-DE/T) делает невозможным увеличение энергии.
Переход к ненулевым температурам (T>0) значительно обогащает динамику системы, которая теперь может с ненулевой вероятностью делать переходы с возрастанием E и посещать новые статистические состояния.
Вернемся к нейронным сетям. Для некоторого нейрона возможность перехода в состояние с большей энергией означает отказ от следования детерминированному закону изменения состояний. При ненулевых температурах состояние нейрона определяется вероятностным образом:
Si(t+1) = sign( hi(t)- ), с вероятностью Pi
Si(t+1) = - sign( hi(t)- ), с вероятностью (1-Pi)
Вероятность перехода в состояние с возрастанием энергии тем меньше, чем больше разница в энергиях конечного E2 и начального E1 состояний. В статистических системах эта вероятность определяется формулой Больцмана:
Нетрудно заметить, что в пределе низких температур (T0) вероятность P стремится к единице, и динамика переходит в обычную детерминированную нейродинамику.
При высоких температурах (T E) вероятность P=1/2, т.е. изменение состояния нейрона никак не связано ни с его предыдущим состоянием, ни со значением “нейронного поля” h(t). Состояния сети меняются полностью хаотично, и ситуация ничем не напоминает систему с памятью.
Динамика нейронной системы при ненулевых температурах уже не является Ляпуновской, так как энергия сети не обязана теперь уменьшаться со временем. При этом, вообще говоря, полной стабилизации состояния сети не происходит - состояние быдет продолжать испытывать изменения, при которых E T.
Если теперь постепенно уменьшать температуру сети, большое увеличение энергии становится все менее вероятным, и система замерзает в окрестности минимума. Очень важно отметить, что замерзание с большой вероятностью будет происходить в чаше самого глубокого и широкого минимума, т.е. сеть преимущественно достигает глобального минимума энергии.
Процесс медленного остывания и локализации состояния в области низких энергий аналогичен процессу отжига металлов, применяемому в промышленности для их закалки, поэтому он получил название имитации отжига.
Введение отличной от нуля температуры в динамику нейросети улучшает свойства памяти, так как система перестает “чувствовать” мелкие локальные минимумы, отвечающие ложным образам. Однако за это приходится платить неточностями при воспроизведении образов вследствие отсутствия полной стабилизации системы в точке минимума.