
- •Часть 2
- •2.1.Электрические цепи трехфазного переменного тока
- •2.2. Соединение источников и приемников энергии звездой
- •2.3. Соединение источников и приемников энергии треугольником
- •2.4. Мощность трехфазной системы
- •3.1.Основные понятия о измерениях
- •3.3. Магнитоэлектрическая система
- •3.4. Электромагнитная система
- •3.5. Электродинамическая система
- •3.6. Индукционная система
- •3.7. Измерение тока и напряжения
- •3.8. Измерение мощности
- •3.9. Измерение сопротивлений
- •3.10. Измерение неэлектрических величин электрическими методами
- •4.1.Трансформаторы
- •4.2. Принцип действия и конструкции трансформаторов
- •4.3. Физические процессы в трансформаторе. Уравнение эдс
- •4.4. Уравнения электрического и магнитного состояния
- •4.5.Приведенный трансформатор
- •4.6.Эквивалентная схема трансформатора
- •4.7. Векторная диаграмма трансформаторов
- •4.8.Потери и коэффициент полезного действия
- •4.9.Трехфазные трансформаторы
- •4.9.1. Общие положения
- •4.10.Группы соединения обмоток
- •4.11. Параллельная работа трансформаторов
- •4.12. Трансформаторы специального назначения
- •4.12.1. Трехобмоточный трансформатор
- •4.12.2. Автотрансформатор
- •4.12.3. Трансформатор для дуговой сварки
- •4.12.4. Измерительные трансформаторы тока и напряжения
- •5.1. Общие сведения и конструкция асинхронного двигателя
- •5.2. Принцип образования вращающегося магнитного поля машины
- •5.3. Принцип действия асинхронного двигателя
- •5.4. Магнитные поля и эдс асинхронного двигателя
- •5.5. Основные уравнения асинхронного двигателя
- •5.6. Приведение параметров обмотки ротора к обмотке статора
- •5.7. Векторная диаграмма асинхронного двигателя
- •5.8. Схема замещения асинхронного двигателя
- •5.9. Потери и кпд асинхронного двигателя
- •5.10. Уравнение вращающего момента
- •5.11. Механическая характеристика асинхронного двигателя
- •5.12. Рабочие характеристики асинхронного двигателя
- •5.13. Пуск, регулирование частоты вращения и торможение асинхронного двигателя.
- •5.14. Однофазные асинхронные двигатели
- •5.15. Двухфазный конденсаторный двигатель
- •5.16. Однофазный двигатель с явно выраженными полюсами
- •5.17. Использование трехфазного двигателя в качестве однофазного
- •6.1. Конструкция и принцип действия синхронного генератора
- •6.2. Эдс синхронного генератора
- •6.3. Синхронный двигатель
- •6.3.1. Конструкция и принцип действия
- •6.3.2. Система пуска синхронного двигателя
- •6.4. Коллекторный двигатель переменного тока
- •7. Машины постоянного тока
- •7.1. Принцип действия и конструкция
- •7.2. Способы возбуждения машин постоянного тока
- •7.3. Обмотки якоря машины постоянного тока
- •7.4. Эдс и электромагнитный момент генератора постоянного тока
- •7.5. Двигатель постоянного тока
- •7.6. Электромашинные усилители
- •7.7. Тахогенераторы постоянного тока
- •8.Электропривод
- •8.1.Основные понятия и определения
- •8.2.Уравнение движения электропривода
- •8.3.Выбор мощности электродвигателя
- •8.4.Электрические аппараты и элементы
- •8.5.Принципы и схемы автоматического управления
- •8.5.1. Принципы управления
- •8.5.2. Схемы управления
- •8.3. Электрооборудование токарных, фрезерных, заточных и сверлильных станков
- •8.3.1. Электрооборудование токарного станка
- •8.4. Заземление и зануление электрооборудования
- •8.5. Электрофицированный инструмент
- •9.Электробезопасность
- •9.1 Общие положения
- •9.2. Первая помощь при поражении электрическим током
7.6. Электромашинные усилители
Простейшим усилителем мощности является обычный генератор постоянного тока с независимым возбуждением. Коэффициент усиления машины определяется отношением тока, протекаемого в обмотке якоря, к току возбуждения:
В таком исполнении коэффициент усиления равен порядка 15 - 30. Усилительную способность генератора можно увеличить, если использовать каскадную схему включения генераторов. В этом случае с выхода первого генератора подключается обмотка возбуждения второго, а выход со второго генератора будет превышать по мощности вход первого в 1000 и более раз. Каскадная схема применяется редко из-за своей громоздкости и дороговизны. Чаще используют так называемые электромашинные усилители (ЭМУ). Элек-трическая схема ЭМУ приведена на рис. 7.6.1.
Конструктивно электромашинный усилитель представляет собой коллекторную машину постоянного тока с независимым возбуждением, имеющую два комплекта щеток (продольные 1-1' и поперечные 2-2'). Ток, протекающий по обмотке возбуждения Iв, создает продольный магнитный поток Фd, направленный по оси полюсов машины. При вращении якоря на поперечных щетках 2-2' появляется ЭДС Е2 = С n Фd Так как они замкнуты накоротко, то в обмотке якоря появляется большой ток I2. Этот ток создает в обмотке якоря сильное поперечное магнитное поле реакции якоря Фq, неподвижное в пространстве и направленное по оси щеток 2-2'. Под действием магнитного потока Фq в якорной обмотке ме-жду щетками 1-1' возникает ЭДС Е1 = С n Фq >>Е2, так как Фq >>Фd. При подключении к щеткам 1-1' нагрузки Rн в цепи потечет ток Iя превышающий ток Iв в десятки тысяч раз. Электромашинные усилители применяют для автоматического управления мощными электродвигателями.
7.7. Тахогенераторы постоянного тока
Тахогенераторами называют электрические машины малой мощности, работающие в генераторном режиме и служащие для преобразования частоты его вращения в электрический сигнал. Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению являются электрическими коллекторными машинами. Выходной характеристикой тахогенератора является зависимость величины на-пряжения на зажимах якоря Uя от частоты его вращения n при постоянном магнитном потоке возбуждения Ф и постоянном сопротивлении нагрузки Rнагр На рис. 7.8.1 показана выходная характеристика тахогенератора при различных Rнагр.
8.Электропривод
8.1.Основные понятия и определения
Oпределение: Электропривод предназначен для приведения в движение различных машин и механизмов. Он состоят из электрического двигателя, аппаратуры управления и передаточных звеньев от двигателя к рабочей машине. Привод бывает групповым, индивидуальным и многодвигательным.
В первом случае один двигатель приводит в движение несколько машин, а во втором каждая машина снабжена своим двигателем. Многодвигательный привод - это группа двигателей одной машины, где каждый двигатель приводит в движение отдельный механизм. Из основных требований, предъявляемых к электроприводу, следует отметить следующие: 1. Электродвигатель должен обладать такой мощностью, чтобы он передавал не только статическую нагрузку, но и кратковременные перегрузки. 2. Аппаратура управления должна обеспечить все требования производственного процесса машины, включая регулирование частоты вращения, реверсирование и др.