
- •Часть 2
- •2.1.Электрические цепи трехфазного переменного тока
- •2.2. Соединение источников и приемников энергии звездой
- •2.3. Соединение источников и приемников энергии треугольником
- •2.4. Мощность трехфазной системы
- •3.1.Основные понятия о измерениях
- •3.3. Магнитоэлектрическая система
- •3.4. Электромагнитная система
- •3.5. Электродинамическая система
- •3.6. Индукционная система
- •3.7. Измерение тока и напряжения
- •3.8. Измерение мощности
- •3.9. Измерение сопротивлений
- •3.10. Измерение неэлектрических величин электрическими методами
- •4.1.Трансформаторы
- •4.2. Принцип действия и конструкции трансформаторов
- •4.3. Физические процессы в трансформаторе. Уравнение эдс
- •4.4. Уравнения электрического и магнитного состояния
- •4.5.Приведенный трансформатор
- •4.6.Эквивалентная схема трансформатора
- •4.7. Векторная диаграмма трансформаторов
- •4.8.Потери и коэффициент полезного действия
- •4.9.Трехфазные трансформаторы
- •4.9.1. Общие положения
- •4.10.Группы соединения обмоток
- •4.11. Параллельная работа трансформаторов
- •4.12. Трансформаторы специального назначения
- •4.12.1. Трехобмоточный трансформатор
- •4.12.2. Автотрансформатор
- •4.12.3. Трансформатор для дуговой сварки
- •4.12.4. Измерительные трансформаторы тока и напряжения
- •5.1. Общие сведения и конструкция асинхронного двигателя
- •5.2. Принцип образования вращающегося магнитного поля машины
- •5.3. Принцип действия асинхронного двигателя
- •5.4. Магнитные поля и эдс асинхронного двигателя
- •5.5. Основные уравнения асинхронного двигателя
- •5.6. Приведение параметров обмотки ротора к обмотке статора
- •5.7. Векторная диаграмма асинхронного двигателя
- •5.8. Схема замещения асинхронного двигателя
- •5.9. Потери и кпд асинхронного двигателя
- •5.10. Уравнение вращающего момента
- •5.11. Механическая характеристика асинхронного двигателя
- •5.12. Рабочие характеристики асинхронного двигателя
- •5.13. Пуск, регулирование частоты вращения и торможение асинхронного двигателя.
- •5.14. Однофазные асинхронные двигатели
- •5.15. Двухфазный конденсаторный двигатель
- •5.16. Однофазный двигатель с явно выраженными полюсами
- •5.17. Использование трехфазного двигателя в качестве однофазного
- •6.1. Конструкция и принцип действия синхронного генератора
- •6.2. Эдс синхронного генератора
- •6.3. Синхронный двигатель
- •6.3.1. Конструкция и принцип действия
- •6.3.2. Система пуска синхронного двигателя
- •6.4. Коллекторный двигатель переменного тока
- •7. Машины постоянного тока
- •7.1. Принцип действия и конструкция
- •7.2. Способы возбуждения машин постоянного тока
- •7.3. Обмотки якоря машины постоянного тока
- •7.4. Эдс и электромагнитный момент генератора постоянного тока
- •7.5. Двигатель постоянного тока
- •7.6. Электромашинные усилители
- •7.7. Тахогенераторы постоянного тока
- •8.Электропривод
- •8.1.Основные понятия и определения
- •8.2.Уравнение движения электропривода
- •8.3.Выбор мощности электродвигателя
- •8.4.Электрические аппараты и элементы
- •8.5.Принципы и схемы автоматического управления
- •8.5.1. Принципы управления
- •8.5.2. Схемы управления
- •8.3. Электрооборудование токарных, фрезерных, заточных и сверлильных станков
- •8.3.1. Электрооборудование токарного станка
- •8.4. Заземление и зануление электрооборудования
- •8.5. Электрофицированный инструмент
- •9.Электробезопасность
- •9.1 Общие положения
- •9.2. Первая помощь при поражении электрическим током
5.2. Принцип образования вращающегося магнитного поля машины
На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода (рис. 5.2.1.).
Используя график изменения трехфазного тока, проставим на нем несколько отметок времени; tl, t2, t3,...tn. Наиболее удобными будут отметки, когда один из графиков пересекает ось времени.
Теперь рассмотрим электромагнитное состояние обмоток статора в каждые из принятых, моментов времени.
Рассмотрим вначале точку t1. Ток в фазе А равен нулю, в фазе С он будет положительным - (+) , а в фазе В - отрицательным (·) (рис. 5.2.2, а).
Поскольку каждая фазная обмотка имеет замкнутую форму, то конец фазной обмотки В-У будет иметь противоположный знак, т.е. У - (+), а конец Z обмотки C-Z - (·).
Известно, что вокруг проводника с током всегда образуется магнитное поле. Направление его определяется правилом правоходового винта ("буравчика").
Проведем силовую магнитную линию вокруг проводников С и У и, соответственно, В и Z (см. штриховые линии на рис. 5.2.2 a).
Рассмотрим теперь момент времени t2. В это время тока в фазе В не будет. В проводнике А фазы А-Х он будет иметь знак (+), а в проводнике С фазы C-Z он будет иметь знак (·). Теперь проставим знаки: в проводнике Х - (·), а в проводнике Z - (+).
Проведем силовые линии магнитного поля в момент времени t2 (рис. 5.2.2,б). Заметим при этом, что вектор совершил поворот.
Аналогичным образом проведем анализ электромагнитного состояния в фазных обмотках статора в момент времени t3,…tn (рис. 5.2.2, б, в, г, д).
Из рисунков 5.2.2 наглядно видно, что магнитное поле в обмотках и его поток Ф совершают круговое вращение.
Частота вращения магнитного поля статора определяется следующей формулой:
где f - частота тока питающей сети, Гц; p - число пар полюсов.
Если принять f=50 Гц, то для различных чисел пар полюсов (р=1, 2, 3, 4, ) n1=3000, 1500, 1000, 750, об/мин.
5.3. Принцип действия асинхронного двигателя
Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу - Fэм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.
Частота вращения ротора n2 будет всегда меньше синхронной частоты n1, т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой n2 равной частоте вращающегося поля статора n1. В этом случае поле не будет пересекать проводники роторной обмотки. Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно c полем статора. Разность между частотами поля статора n2 и ротора n1 называется частотой скольжения n.
.
Отношение частоты скольжения к частоте поля называется скольжением:
.*)
В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение Sн обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:
Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора - вторичной. Разница состоит в том, что ЭДС в обмотках трансформатора наводится неизменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя - потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым. В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается.
ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе.
Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения n. Она же наводит в обмотке ротора ЭДС E2, частота которой f2 связана со скольжением S:
Учитывая, что f1=рn1/60, f2=рn1S/60.
Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при f1=50 Гц).