
- •Термохимические уравнения
- •Закон Гесса
- •Термодинамические параметры
- •Внутренняя энергия и энтальпия
- •Энтропия и ее роль в описании процессов протекающих в изолированной и закрытой системах
- •Химическое равновесие
- •Смещение химического равновесия
- •Принцип ле – шателье (рассмотреть на пример)
- •Катализаторы
- •Гомогенный и гетерогенный катализ
- •Связь константы равновесия со стандартным изменением энергии Гиббса в реакции
- •Строение атома и периодический закон
- •Ядра атомов, положительный заряд ядра и порядковый номер элемента
- •Изотопы, изобары, тип ядер?
- •Понятие о волновой и квантовой механике
- •Корпускулярно-волновая природа электрона
- •Квантовые числа
- •Правило заполнения энергетических уровней и под уровней элементов периодической системы
- •Особенности электронного строения атомов элементов периодической системы
- •Особенности электронного строения атомов элементов в главных и побочных подгруппах, семействах лантаноидов и актиноидов
- •Эффекты экранирования и проникновения
- •Периодический характер свойств элементов, связанных со строениями их электронных оболочек
- •Изменение кислотно-основных свойств оксидов и гидроксидов в периодах и группах
- •Степени окисления элементов
- •Степень окисления соответствует заряду иона или формальному заряду атома в молекуле или в химической формальной единице, например:
- •Изменение окислительно-восстановительных свойств элементов и их соединений в периодах и группах
- •Химическая связь
- •Полярная и неполярная ковалентная связь
- •[Править]sp2-гибридизация
- •[Править]sp3-гибридизация
- •Свойства гибридизированных ковалентных связей
- •Сигма и пи связь
- •Дипольный момент
- •Геометрия простых и сложных молекул
- •Одинарная и кратная свзяь Связи σ и π. Одинарные и кратные связи
- •Ионная свзяь и ее свойства
- •Структура ионных соединений
- •Донорно – акцепторная связь. Ее свойства, привести примеры
- •Водродная связь
- •Межмолекулярные силы взаимодействия, их свойства (силы Ван-дер-Вальса)
- •Аморфное и кристаллическое состояние вещества
- •Свойства веществ в обоих состояниях (аморфное и кристаллическе)
- •Типы кристаллических решеток: атомные ионные молекулярные, зависимость свойств вещества от типов кристаллических решеток
- •Понятие валентность (ковалентность, электровалентность), заряд иона. Степень окисления, порядок связи растворы
- •Что называется раствором
- •Классификация растворов по агрегатному состоянию, по размерам частиц и концентрации
- •Способы выражения концентраций растворов
- •Ассоциация молекул воды
- •Теория электролитической диссоциации, степень диссоциации
- •Слабые и сильные электролиты
- •Растворы электролитов
- •Изотонический коэффициент
- •Причина неподчинения растворов электролитов законам Вант-Гоффа и Рауля
- •Определить изотонический коэффициент если известна степень диссоциации. Задача скорее всего.
- •Константа диссоциации слабых электролитов
- •Амфотерные гидроксиды
- •Диссоциация воды
- •Ионное произведение воды
- •Водородный показатель (pH)
- •Произведение растворимости
- •Гидролиз, константа гидролиза
- •Три случая гидролиза
- •Буферные растворы
- •Окислительно – восстановительные реакции, электрохимические процессы
- •Составление окислительно-восстановительных реакций
- •Метод электронного баланса возможно задачи
- •Ионно-электронный метод возможно задачи
- •Направление и полнота протекания овр
- •Гальванический элемент. Принципы его работы
- •Уравнение Нернста
- •Эдс гальванического элемента
- •Расчет энергии Гиббса реакции исходя из значения эдс
- •Электролиз
- •Электролиз расплавов и растворов
- •Порядок разряда катионов и анионов на электродах
- •Перенапряжение водорода
- •Факторы, влияющие на перенапряжение
- •Законы электролиза
- •Практическое значение законов электролиза
Слабые и сильные электролиты
Электролиты делятся на слабые и сильные. К сильным электролитам относятся многие минеральные кислоты, почти все соли, гидроксиды щелочных металлов, гидроксиды щелочноземельных металлов. К слабым электролитам относят воду, Н2S, H2CO3, HClO, органические кислоты, слабые основания, малорастворимые основания, амфотерные гидроксиды металлов.
Растворы электролитов
Поскольку сильные электролиты почти полностью распадаются на ионы в водных растворах, то концентрация ионов может быть высокой. В концентрированных растворах сильных электролитов ионы сближаются настолько , что взаимодействие между ними становится весьма существенным. За счет межионного взаимодействия понижается подвижность ионов , и при участии ионов в химических реакциях создается эффект уменьшения концентрации. Поэтому ионы вступают в химические реакции не в соответствии с их истиной концентрацией, а в соответствии с их кажущейся концентрацией – активностью. Между активностью и концентрацией иона в растворе существует зависимость: ai=yi*ci .
Изотонический коэффициент
Позволяет учитывать влияние неидеальности растворов на их физические свойства. Молекулы растворенных веществ могут диссоциировать, что характерно для растворов электролитов, но наряду с диссоциацией может происходить и ассоциация молекул. Для учета изменения числа частиц в растворе за счет процессов их диссоциации и ассоциации используют изотонический коэффициент i.
Изотонический коэффициент выражает отношение числа частиц растворенного вещества к числу его частиц в исходном состоянии. Для растворов неэлектролитов изотонический коэффициент равен 1, процесс диссоциации – и.к. больше 1, ассоциация – меньше 1. Экспериментальное определение изотонического коэффициента позволяет вычислить степень диссоциации или ассоциации растворенного вещества.
Причина неподчинения растворов электролитов законам Вант-Гоффа и Рауля
Электролиты - это вещества, растворы и расплавы которых проводят электрический ток (кислоты, соли, щёлочи). Эти растворы сильно отклоняются от всех рассмотренных законов. Для них осмотическое давление, понижение давления пара, изменения температур кипения и замерзания всегда больше, чем это отвечает концентрации раствора. Например, понижение температуры замерзания раствора, содержащего 1г NaCl в 100 г воды, почти вдвое превышает изменение температуры замерзания, вычисленное по законам Рауля. Во столько же раз и осмотическое давление этого раствора больше теоретической величины. Чтобы распространить уравнение осмотического давления на растворы электролитов, Вант-Гофф ввёл в него поправочный коэффициент i (изотонический коэффициент), показывающий, во сколько раз осмотическое давление данного раствора больше "нормального": . Коэффициент i определяется для каждого раствора экспериментальным путём - например по понижению давления пара, или по понижению температуры замерзания, или по повышению температуры кипения: Способность электролитов в растворах проводить электрический ток и их отклонения от законов Рауля и Вант-Гоффа объясняет теория электролитической диссоциации Аррениуса.