
- •Автоматические системы регулирования Основные понятия и определения
- •Обратная связь в аср
- •Классификация автоматических систем регулирования
- •Принцип регулирования по отклонению.
- •Принцип регулирования по возмущению.
- •Комбинированный принцип регулирования.
- •Классификация сар по назначению
- •Классификация аср по характеру регулирующих воздействий.
- •2. Статика и динамика систем Равновесные и неравновесные состояния систем
- •Уравнение статики и динамики
- •Переходные процессы
- •Устойчивость
- •3. Временные характеристики систем
- •Типовые переходные процессы
- •Технологические объекты регулирования, их классификация и основные свойства. Виды объектов, их мат. Описание.
- •Свойства объектов регулирования
- •Устойчивые объекты 1-гопорядка
- •Влияние свойств объектов на их регулирование.
- •Методы определения свойств объектов.
- •Экспериментальное определение свойств объекта.
- •Аппроксимация переходных характеристик объектов.
- •Автоматизированные системы управления технологическими процессами (асутп) Общие сведения
- •Определения.
- •Функции асутп
- •Обеспечение асутп
- •Режимы работы асутп
- •Автоматика, автоматизация производственных процессов и асу тп Введение
- •1. Предмет и задачи курса. Значение автоматизации в повышении эффективности производства.
- •2. Управление техническими процессами Основные понятия и определения
- •1.5 Государственная система промышленных приборов и средств автоматизации (гсп)
- •1. Основные принципы построения гсп. Структура гсп.
- •2. Элементы метрологии и техники измерений
- •2.1 Метрология
- •1. Метрология
- •2. Физические величины.
- •3. Единицы физических величин.
- •4. Измерения.
- •5. Виды средств измерений
- •Преобразователи.
- •Измерение температур.
- •Манометрические термометры
- •Термометры сопротивления.
- •Приборы для измерения и контроля температуры.
- •Манометрические термометры.
- •Преобразователи термоэлектрические.
- •Термопреобразователи сопротивления.
- •Приборы для измерения и контроля давления и разности давлений
- •Измерительные преобразователи давления.
- •Преобразователи давления с пневматическим выходным сигналом.
- •Измерительные преобразователи типов «Сапфир» и «Сапфир – 22 Ех»
- •Измерительные преобразователи перепада давления.
- •Преобразователи перепада давлений с пневматическим выходным сигналом.
- •Преобразователь измерительный разности давления пневматический 13дд11
- •Приборы для измерения и контроля расхода.
- •Расходомеры переменного перепада давления
- •Стандартные сужающие устройства.
- •Расходомеры переменного уровня.
- •Расходомеры обтекания.
- •Ротаметры с электрической дистанционной передачей показаний.
- •Электромагнитные расходомеры.
- •Расходомеры с электромагнитным преобразователем расхода.
- •Приборы для измерения и контроля уровня.
- •1. Уровнемеры поплавковые.
- •2. Уровнемеры буйковые.
- •3. Уровнемеры акустические.
- •4. Уровнемеры ультразвуковые.
- •5. Уровнемеры радиоизотопные.
- •6. Уровнемеры емкостные.
Типовые переходные процессы
Из устойчивых переходных процессов в качестве оптимального с точки зрения требований технологии выбирают один из трех типовых процессов:
-
граничный апериодический процесс с
минимальным временем регулирования tp
min
(рис. 9а);
- процесс с 20%-ым перерегулированием (рис. 9б);
- процесс с
минимальной квадратичной площадью
отклонения min
(рис. 9в).
Граничный апериодический процесс характеризуется отсутствием перерегулирования, минимальным общим временем регулирования и наименьшим по сравнению с другими типовыми переходными процессами воздействием регулятора на объект (это наименьшее воздействие вызывает наибольшее отклонение регулируемой величины от заданного значения). Такой переходный процесс используется в качестве оптимального при значительном влиянии регулирующего воздействия на другие технологические величины объекта при отклонении основной регулируемой величины для того, чтобы свести их отклонение к минимуму.
Процесс с 20%-ым перерегулированием характеризуется большей величиной регулирующего воздействия, чем в предыдущем случае, и меньшим отклонением регулируемой величины; при этом время регулирования несколько возрастает. Этот процесс выбирается в качестве оптимального в случаях, когда допустимо некоторое перерегулирование.
Процесс с минимальной квадратичной площадью отклонения регулируемой величины обладает значительным (до 40%) перерегулированием, большим временем регулирования и наименьшей величиной максимального динамического отклонения регулируемой величины. Он имеет место при большей по сравнению с описанными выше процессами величине регулирующего воздействия и применяется в качестве оптимального, если величина динамического отклонения параметра должна быть минимальной.
Технологические объекты регулирования, их классификация и основные свойства. Виды объектов, их мат. Описание.
Аппарат, система аппаратов, машина и др. устройство, в котором одна или несколько химико-технологических величин, характеризующих его состояние, поддерживаются автоматическими регуляторами на заданном значении или изменяются по определенному закону, называется объектом химической технологии. В хим. Промышленности объектами являются реакторы, абсорберы, экстракторы, ректификационные колонны, теплообменники, насосы, компрессоры и др. аппараты технологических установок, а также участки трубопроводов.
Являясь неотъемлемой частью АСУ или АСР, каждый объект представляет собой динамическую систему со своими входными и выходными величинами. К выходным величинам объектов относят регулирующие воздействия х (потоки жидкостей, газов или сыпучих твердых веществ и тепловые потоки), которые с помощью исполнительных устройств можно изменять, а также разнообразные возмущающие воздействия z (изменение параметров исходного сырья и энергетических агентов, состояния технологической аппаратуры, атмосферных условий и т.д.).
Одним из существенных возмущений является изменение нагрузки объекта. Под нагрузкой объекта понимают количество вещества (или энергии), которые проходит через объект в единицу времени. Так, нагрузкой резервуара является расход протекающей через него жидкости, нагрузкой теплообменника – количество тепла, передаваемого в ед. времени от более нагретого вещества к более холодному. Величина нагрузки определяет размеры аппарата, а также типоразмеры первичные преобразователей и исполнительных устройств АСР.
Выходные величины объектов – регулируемые величины у - характеризует протекание химико-технологического процесса в объекте. Такими величинами могут быть температура, давление и расход жидкости, газа или пара, уровень жидкости или сыпучего материала, концентрация растворов, плотность и вязкость жидкостей, влажность газов или сыпучих материалов и др. Текущее значения регулируемых величин определяют протекание процесса в объекте в данный момент времени. Под влиянием возмущающих и регулирующих воздействий регулируемые величины изменяются во времени. Число входных величин объекта обычно превышает число выходных.
Математические модели. Процессы, протекающие в объектах, могут быть формализованы, т.е. с достаточной степенью точности описаны с помощью математических зависимостей. Совокупность математических уравнений, отражающих взаимосвязь выходных и входных величин объекта, дополненная ограничениями, накладываемыми на эти величины условиями их физической реализации и безопасной эксплуатации, представляют собой математическую модель (математическое описание) объекта.
Математическая модель должна отражать особенности объекта, существенные с точки зрения его управления, быть адекватной моделируемому объекту (достаточно отражать его свойства количественно и качественно), а также быть по возможности более простой.
Математическая формализация объекта позволяет использовать для его исследования, а также для решения задачи управления этим объектом и методы математического моделирования, которые обычно реализуют с применением средств вычислительной техники.
Поведение объекта в установившемся состоянии описывается статической моделью, а в неравновесном – динамической.
Статическая модель содержит уравнение связи между входными и выходными величинами объекта в равновесном состоянии:
y= f(x,z)
динамическая модель связывает входные и выходные величины объекта в неравновесном состояниях:
y=f(x,z,t)
а также ограничения, накладываемые на отдельные величины, например:
ymin<y<ymax; xmin<x<xmax
Классификация объектов проводится по ряду признаков. Различают одномерные и многомерные объекты.
Одномерные объекты имеют одну выходную величину и описываются одним уравнением статики и одним уравнением динамики. Примером одномерного объекта может служить резервуар для жидкости, входными величинами которого являются приход Fпр и расход Fр жидкости, а выходной величиной – уровень жидкости L.
Уравнение статики
этого объекта L=f(Fпр,
Fр)
Уравнение динамики L=f(Fпр, Fр, t).
Многомерные объекты содержат по две, три и более выходных величины. Число уравнений статики и динамики должно соответствовать числу выходных величин.
Объекты могут обладать сосредоточенными и распределенными параметрами.
Объекты с сосредоточенными параметрами. К ним относятся объекты, регулируемые величины которых (температура жидкости по длине теплообменника, концентрации компонентов по высоте ректификационной колонны и др.) имеют разные числовые значения в различных точках объекта в данный момент времени. Примером объектов с распределенными параметрами могут служить: аппараты типа «труба в трубе», ректификационные колонны, экстракторы, абсорберы, десорберы, барабанные сушилки сыпучих материалов, трубчатые реакторы и др.