
- •Автоматические системы регулирования Основные понятия и определения
- •Обратная связь в аср
- •Классификация автоматических систем регулирования
- •Принцип регулирования по отклонению.
- •Принцип регулирования по возмущению.
- •Комбинированный принцип регулирования.
- •Классификация сар по назначению
- •Классификация аср по характеру регулирующих воздействий.
- •2. Статика и динамика систем Равновесные и неравновесные состояния систем
- •Уравнение статики и динамики
- •Переходные процессы
- •Устойчивость
- •3. Временные характеристики систем
- •Типовые переходные процессы
- •Технологические объекты регулирования, их классификация и основные свойства. Виды объектов, их мат. Описание.
- •Свойства объектов регулирования
- •Устойчивые объекты 1-гопорядка
- •Влияние свойств объектов на их регулирование.
- •Методы определения свойств объектов.
- •Экспериментальное определение свойств объекта.
- •Аппроксимация переходных характеристик объектов.
- •Автоматизированные системы управления технологическими процессами (асутп) Общие сведения
- •Определения.
- •Функции асутп
- •Обеспечение асутп
- •Режимы работы асутп
- •Автоматика, автоматизация производственных процессов и асу тп Введение
- •1. Предмет и задачи курса. Значение автоматизации в повышении эффективности производства.
- •2. Управление техническими процессами Основные понятия и определения
- •1.5 Государственная система промышленных приборов и средств автоматизации (гсп)
- •1. Основные принципы построения гсп. Структура гсп.
- •2. Элементы метрологии и техники измерений
- •2.1 Метрология
- •1. Метрология
- •2. Физические величины.
- •3. Единицы физических величин.
- •4. Измерения.
- •5. Виды средств измерений
- •Преобразователи.
- •Измерение температур.
- •Манометрические термометры
- •Термометры сопротивления.
- •Приборы для измерения и контроля температуры.
- •Манометрические термометры.
- •Преобразователи термоэлектрические.
- •Термопреобразователи сопротивления.
- •Приборы для измерения и контроля давления и разности давлений
- •Измерительные преобразователи давления.
- •Преобразователи давления с пневматическим выходным сигналом.
- •Измерительные преобразователи типов «Сапфир» и «Сапфир – 22 Ех»
- •Измерительные преобразователи перепада давления.
- •Преобразователи перепада давлений с пневматическим выходным сигналом.
- •Преобразователь измерительный разности давления пневматический 13дд11
- •Приборы для измерения и контроля расхода.
- •Расходомеры переменного перепада давления
- •Стандартные сужающие устройства.
- •Расходомеры переменного уровня.
- •Расходомеры обтекания.
- •Ротаметры с электрической дистанционной передачей показаний.
- •Электромагнитные расходомеры.
- •Расходомеры с электромагнитным преобразователем расхода.
- •Приборы для измерения и контроля уровня.
- •1. Уровнемеры поплавковые.
- •2. Уровнемеры буйковые.
- •3. Уровнемеры акустические.
- •4. Уровнемеры ультразвуковые.
- •5. Уровнемеры радиоизотопные.
- •6. Уровнемеры емкостные.
Принцип регулирования по отклонению.
В
системах, работающих по отклонению
регулируемой от заданного значения
(рис. 3), возмущение z
вызывает
отклонение текущего значения регулируемой
величины yт
от ее заданного значения uз.
Автоматический регулятор АР сравнивает
значения y
и
u,
при их рассогласовании вырабатывает
регулирующее воздействие x
соответствующего
знака, которое через исполнительное
устройство (на рис. Не показано) подается
на объект регулирования ОР, и устраняет
это рассогласование.
В системах регулирования по отклонению для формирования регулирующих воздействий необходимо рассогласование, в этом состоит их недостаток, поскольку задача регулятора состоит именно в том, чтобы не допускать рассогласование. Однако на практике такие системы получили преимущественное распространение, т.к. регулирующее воздействие в них осуществляется независимо от числа, вида и места появления возмущающих воздействий. Системы регулирования по отклонению являются замкнутыми.
Принцип регулирования по возмущению.
П
ри
регулировании по возмущению (рис.4)
регулятор АРв
получает информацию о текущем значении
основного возмущающего воздействия
z1.
При изменении его и несовпадении с
номинальным значением uв
регулятор формирует регулирующее
воздействие x,
направляемое на объект.
В системах, действующих по возмущению, сигнал регулирования проходит по контуру быстрее, чем в системах, построенных по принципу отклонения, вследствие чего возмущающее воздействие может, быть устранено еще до появления рассогласования. Однако реализовать регулирование по возмущению для большинства объектов химической технологии практически не представляется возможным, т.к. это требует учета влияния всех возмущений объекта (z2, z3, …), число которых, как правило, велико; кроме того, некоторые из них не могут быть оценены количественно. Например, измерение таких возмущений как изменение активности катализатора, гидродинамической обстановки в аппарат, условий теплопередачи через стенку теплообменника и многих других наталкивается на принципиальные трудности и часто неосуществимо. Обычно учитывают основное возмущение, например, по нагрузке объекта. Кроме того, в контур регулирования системы по возмущению сигналы о текущем значении регулируемой величины у не поступают, поэтому с течением времени отклонение регулируемой величины от номинального значения может превысить допустимые пределы.
Системы регулирования по возмущению являются разомкнутыми.
Комбинированный принцип регулирования.
По такому регулирования, т.е. при совместном использовании принципов регулирования по отклонению и по возмущению (рис. 5), удается получить высококачественные системы. В них влияние основного возмущения z1 нейтрализует регулятором АРв, работающим по принципу возмущения, а влияние других возмущений (z2 и др.) - регулятором АР, реагирующим на отклонение текущего значения регулируемой величины от заданного значения.
Классификация сар по назначению
По назначению (характеру изменения задающего воздействия) АСР подразделяются на:
системы автоматической стабилизации;
системы программного управления;
следующие системы.
Системы автоматической стабилизации предназначены для поддержания регулируемой величины на заданном значении, которое устанавливается постоянным (u=Const). Это наиболее распространенные системы.
Система программного управления построены таким образом, что заданное значение регулируемой величины представляет собой известную заранее функцию времени u=f(t). Они снабжаются программными задатчиками, формирующими величину задания u во времени. Такие системы используются при автоматизации химико-технологических процессов периодического действия или процессов, работающих по определенному циклу.
В следящих системах заданное значение регулируемой величины заранее не известно и является функцией внешней независимой технологической величины u=f(y1). Эти системы служат для регулирования одной технологической величины (ведомой), находящейся в определенной зависимости от значений другой величины (ведущей) технологической величины. Разновидностью следящих систем являются системы регулирования соотношения двух величин, например, расходов двух продуктов. Такие системы воспроизводят на выходе изменение ведомой величины в определенном соотношении с изменением ведущей. Эти системы стремятся устранить рассогласование между значением ведущей величины, умноженным на постоянный коэффициент, и значением ведомой величины.