
- •Классификация системного программного обеспечения
- •Другая классификация
- •Требования к системному программному обеспечению
- •2. Операционная система. Основные функции ос. Структура операционной системы.
- •3. Интерфейс прикладных программ (api) ос. Api Win32 (системные функции).
- •Api операционных систем.
- •Структура api-программ
- •4. Дисковая подсистема в архитектуре ibm pc.
- •5. Низкоуровневая организация дисковой памяти. Сервис bios доступа к дисковой подсистеме.
- •Емкость Диска
- •Оглавление Диска (Каталог)
- •Основные Положения На Память
- •6. Понятие файловой системы. Назначение, требования, функции. Способы организации фс.
- •7. Объекты файловой системы: файлы, директории, логические устройства, другие виды объектов. Файловая система
- •Имена файлов
- •Типы файлов
- •Логическая организация файла
- •Физическая организация и адрес файла
- •Права доступа к файлу
- •Кэширование диска
- •Общая модель файловой системы
- •Отображаемые в память файлы
- •Современные архитектуры файловых систем
- •8. Файловые системы на основе fat (либо по желанию ntfs, s5fs, ufs, ext и т.Д.).
- •9. Служебные структуры файловых систем fat и их использование.
- •1.3.2. Файловые системы
- •Файловая система fat Краткие теоретические сведения
- •Обзор файловой системы fat
- •Имена файлов в fat
- •Преимущества файловой системы fat
- •Недостатки файловой системы fat
- •Обзор файловой системы hpfs
- •Суперблок
- •Запасной блок
- •Преимущества файловой системы hpfs
- •Недостатки файловой системы hpfs
- •Обзор файловой системы ntfs
- •Надежность
- •Дополнительные функции
- •Поддержка posix
- •Устранение ограничений
- •Преимущества файловой системы fat
- •Недостатки файловой системы ntfs
- •Соглашения именования в ntfs
- •10. Программный интерфейс файловой системы (функции для взаимодействия с фс, файлового ввода-вывода) - dos, Win32.
- •12. Вычислительный процесс. Состояния вычислительного процесса.
- •[Править]Создание программ
- •[Править]Использование программ
- •[Править]Правовые аспекты
- •13. Адресное пространство процесса (задачи).
- •20. Адресное пространство процесса
- •14. Приложения Windows (Win 32), разновидности. Структура оконных (windowed) приложений.
- •2. Особенности приложений Win 32.
- •17. Событийное управление в Win32. Сообщения и очереди сообщений Windows (Windows messages): назначение, структура, отсылка, доставка, обработка.
- •18. Цикл обработки сообщений. Оконная процедура: назначение, выполнение, способы активизации и завершения. Краткие теоретические сведения
- •19. Многозадачность, многозадачные операционные системы, особенности выполнения приложений в многозадачной среде.
- •Краткие теоретические сведения поток
- •Краткие теоретические сведения
- •27. Взаимодействие процессов/потоков, взаимное исключение, синхронизация (базовые сведения)
- •Синхронизация субъектов взаимодействия
- •Сравнительная характеристика механизмов взаимодействия
- •33. Графическая подсистема Win32 (gdi) - общая характеристика, основные концепции, объекты (инструменты).
- •Х.1 Общие сведения
- •Х.2 Системы координат и единицы измерения
- •Х.3 Цвета и палитры
- •Х.4 Основные инструменты графической подсистемы
- •Х.4 Растровая графика
- •Х.5 Управление областями вывода и отсечением
- •Х.6 Некоторые аспекты использования графической подсистемы
- •34. Подсистема памяти. Основные задачи, функции, требования. 35. Виртуальное адресное пространство, управление памятью с использованием виртуального адресного пространства.
- •37. Подсистема памяти Win32. Регионы (области) памяти. Группы функций api подсистемы памяти.
- •38. Распределение памяти на уровне менеджера виртуальной памяти (vmm api - Win32). In (35) 3. Архитектура памяти в Win32® api. 3.2. Управление виртуальной памятью. Vmm.
- •39. Отображение файлов в память (File mapping - Win32).
- •4.1 Адресное пространство процесса.
- •4.2 Функции работы с виртуальной памятью.
- •4.3 Проецирование файлов в память
- •4.4.1 Запуск исполняемых файлов и динамически связываемых библиотек
- •4.4.2 Проецирование файлов данных
- •4.4.3 Взаимодействие процессов через общую область данных
- •4.4 Функции работы с кучами (heap-область)
- •4.5 Глобальные и локальные объекты "память"
- •4.6 Функции crt Memory api
- •X.2. Структура подсистемы памяти Win 32 и группы функций
- •40. Системный реестр Windows: назначение, организация, доступ.
Какую работу нужно написать?
Современные архитектуры файловых систем
Разработчики новых операционных систем стремятся обеспечить пользователя возможностью работать сразу с несколькими файловыми системами. В новом понимании файловая система состоит из многих составляющих, в число которых входят и файловые системы в традиционном понимании.
Новая файловая система имеет многоуровневую структуру (рисунок 2.39), на верхнем уровне которой располагается так называемый переключатель файловых систем (в Windows 95, например, такой переключатель называется устанавливаемым диспетчером файловой системы - installable filesystem manager, IFS). Он обеспечивает интерфейс между запросами приложения и конкретной файловой системой, к которой обращается это приложение. Переключатель файловых систем преобразует запросы в формат, воспринимаемый следующим уровнем - уровнем файловых систем.
Рис. 2.39. Архитектура современной файловой системы
Каждый компонент уровня файловых систем выполнен в виде драйвера соответствующей файловой системы и поддерживает определенную организацию файловой системы. Переключатель является единственным модулем, который может обращаться к драйверу файловой системы. Приложение не может обращаться к нему напрямую. Драйвер файловой системы может быть написан в виде реентерабельного кода, что позволяет сразу нескольким приложениям выполнять операции с файлами. Каждый драйвер файловой системы в процессе собственной инициализации регистрируется у переключателя, передавая ему таблицу точек входа, которые будут использоваться при последующих обращениях к файловой системе.
Для выполнения своих функций драйверы файловых систем обращаются к подсистеме ввода-вывода, образующей следующий слой файловой системы новой архитектуры. Подсистема ввода вывода - это составная часть файловой системы, которая отвечает за загрузку, инициализацию и управление всеми модулями низших уровней файловой системы. Обычно эти модули представляют собой драйверы портов, которые непосредственно занимаются работой с аппаратными средствами. Кроме этого подсистема ввода-вывода обеспечивает некоторый сервис драйверам файловой системы, что позволяет им осуществлять запросы к конкретным устройствам. Подсистема ввода-вывода должна постоянно присутствовать в памяти и организовывать совместную работу иерархии драйверов устройств. В эту иерархию могут входить драйверы устройств определенного типа (драйверы жестких дисков или накопителей на лентах), драйверы, поддерживаемые поставщиками (такие драйверы перехватывают запросы к блочным устройствам и могут частично изменить поведение существующего драйвера этого устройства, например, зашифровать данные), драйверы портов, которые управляют конкретными адаптерами.
Большое число уровней архитектуры файловой системы обеспечивает авторам драйверов устройств большую гибкость - драйвер может получить управление на любом этапе выполнения запроса - от вызова приложением функции, которая занимается работой с файлами, до того момента, когда работающий на самом низком уровне драйвер устройства начинает просматривать регистры контроллера. Многоуровневый механизм работы файловой системы реализован посредством цепочек вызова.
В ходе инициализации драйвер устройства может добавить себя к цепочке вызова некоторого устройства, определив при этом уровень последующего обращения. Подсистема ввода-вывода помещает адрес целевой функции в цепочку вызова устройства, используя заданный уровень для того, чтобы должным образом упорядочить цепочку. По мере выполнения запроса, подсистема ввода-вывода последовательно вызывает все функции, ранее помещенные в цепочку вызова.
Внесенная в цепочку вызова процедура драйвера может решить передать запрос дальше - в измененном или в неизмененном виде - на следующий уровень, или, если это возможно, процедура может удовлетворить запрос, не передавая его дальше по цепочке.