Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Синхронная машина.docx
Скачиваний:
2
Добавлен:
22.04.2019
Размер:
516.74 Кб
Скачать

19) . Сд и ск. Реактивный сд.

Синхронный генератор можно заставить работать в качестве электрического двигателя. У них обмотка статора питается трехфазным переменным током, а обмотка ротора подключается к источнику постоянного напряжения.

При питании трехфазным переменным током обмотки статора синхронного двигателя возникает вращающееся магнитное поле. Скорость вращения поля зависит от частоты переменного тока и числа полюсов статора.

Однако если после включения статора включить постоянный ток в обмотку ротора, то ротор будет стоять на месте. Самостоятельно он тронуться не может. Это объясняется тем, что магнитное поле статора, вращаясь с большой скоростью относительно неподвижного ротора, не может мгновенно сообщить ротору синхронную скорость и заставить его вращаться. Так как ротор обладает значительной массой и большой инерцией, он не в состоянии тронуться с места и развить необходимую скорость. Поэтому для пуска синхронного двигателя приходится применять специальные устройства. Синхронный двигатель имеет ценное качество. Если при малых токах возбуждения ротора он потребляет реактивный ток из сети и работает, как говорят, с отстающим cosφ, то, увеличивая ток возбуждения ротора, можно добиться того, что обмотка статора совсем не будет потреблять реактивный ток и cosφ в этом случае будет равен единице. При дальнейшем увеличении тока возбуждения ротора статор сам начнет отдавать в сеть реактивный ток, и синхронный Двигатель, продолжая нести механическую нагрузку, превращается одновременно в генератор реактивного тока или реактивной мощности. В этом случае двигатель будет как бы подобен конденсатору и станет работать с опережающим cosφ. Синхронный двигатель, предназначенный для улучшения cosφ установки, называется синхронным компенсатором.

Реактивные микродвигатели.

Синхронными реактивными называют микродвигатели с переменным вдоль окружности воздушного зазора магнитным сопротивлением (Xd≠Xq) и невозбужденным ротором. Вращающееся магнитное поле таких микродвигателей создается только МДС статора. Изменение магнитного сопротивления вдоль окружности воздушного зазора двигателя осуществляют путем выбора соответствующей формы и материала ротора.

Угол между осью потока (МДС) статора и продольной осью d ротора обозначим γ. Пусть угол γ=0. Магнитные силовые линии проходят по пути наименьшего сопротивления и не деформируются. Электромагнитные силы притяжения ротора к статору Fэм имеют только нормальные составляющие, и электромагнитный момент равен нулю. Ротор занимает положение устойчивого равновесия. Если под действием внешнего момента Мвн принудительно повернуть ротор на угол γ по часовой стрелке, то магнитные силовые линии изогнутся. У сил появляются тангенциальные составляющие Ft, которые создают реактивный вращающий момент Мр, стремящийся повернуть ротор в исходное положение.    При повороте ротора на 90° силовые линии поля будут вновь проходить прямолинейно, не изгибаясь, но магнитное сопротивление в этом случае больше, чем при γ=0. Реактивный момент Мр=0, т.е. ротор находится в равновесии. Однако, если при γ=0 равновесие устойчивое, то при γ=90° равновесие неустойчивое, и достаточно малейшего возмущения, чтобы ротор вернулся в устойчивое положение максимальной магнитной проводимости или отличающееся от него на 180°. Положение устойчивого равновесия ротора будет при γ=0, 180° и неустойчивого – при γ=90°, 270°.    Таким образом, реактивный момент изменяется по закону Мрр max sin 2γ и всегда стремится установить ротор в положение минимального магнитного сопротивления на пути потока двигателя. Обмотки статора двигателя создают вращающееся магнитное поле, и ротор увлекается реактивным моментом вслед за полем и вращается со скоростью поля.

20) РЕАКТИВНЫЙ СИНХРОННЫЙ ДВИГАТЕЛЬ явнополюсный синхронный электродвигатель без обмотки возбуждения. Магнитный поток создаётся реактивным током статора, потребляемым из сети, а вращающий момент - вследствие различия магнитных проводимостей ротора по продольной и поперечной осям полюсов. Запускается Р. с. д. методом асинхр. пуска за счёт токов, индуктируемых в массивном роторе двигателя вращающимся полем статора. Р. с. д. выполняют 1- и 3-фазными. Мощность Р. с. д. - обычно неск. Вт и редко превышает неск. сотен Вт. Благодаря простоте конструкции и отсутствию обмотки возбуждения, питаемой пост. током, Р. с. д. применяют в устройствах автоматики и телемеханики, в схемах синхронной связи, в аппаратуре звукозаписи, в радиолокации, в бытовых приборах, мед. аппаратуре и т. д.

Ша́говый электродви́гатель — это синхронный бесщёточный электродвигатель с несколькими обмотками, в котором ток подаваемый в одну из обмоток статора вызывает фиксацию ротора. Последовательная активация обмоток двигателя вызывает дискретные угловые перемещения (шаги) ротора.

Конструктивно шаговые электродвигатели состоят из статора, на котором расположены обмотки возбуждения, и ротора, выполненного из магнито-мягкого (ферромагнитного) материала или из магнито-твёрдого (магнитного) материала. Шаговые двигатели с магнитным ротором позволяют получать бо́льший крутящий момент и обеспечивают фиксацию ротора при обесточенных обмотках.

Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным магнитным сопротивлением и двигателей с постоянными магнитами.

Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. 

Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними.

Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянный магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи.

Микродвигатели с постоянными. В рассматриваемых микродвигателях наиболее распространенными являются роторы с радиальным и аксиальным смещением постоянных магнитов и пусковой обмотки.

Ротор состоит из двух основных частей: постоянных магнитов 1, создающих магнитный поток возбуждения и обеспечивающих возникновение электромагнитного момента в синхронном режиме; короткозамкнутой пусковой обмотки типа "беличьей клетки" 2, уложенной в магнитопровод из электротехнической стали 3. Принцип действия двигателей с постоянными магнитами такой же, как и двигателей с электромагнитным возбуждением . В реальных синхронных микродвигателях с постоянными магнитами магнитная система несимметрична и Xd≠Xq. Это наглядно выражено у микродвигателей радиальной конструкции, в которых магнитное сопротивление ротора по продольной оси d больше, чем по поперечной q, вследствие малой магнитной проницаемости материала постоянных магнитов 1 по сравнению с электротехнической сталью 2.