
- •1.Задачи, приводящие к ду
- •2.Основные понятия теории ду
- •3.Задачи Коши. Теорема существования и единственности решения
- •Теорема существования и единственности решения задачи Коши для номального уравнения первого порядка.
- •4.Ду первого порядка. Общее и частное решение
- •5.Уравнение с разделенними и разделяющимися переменными
- •6.Однородное уравнение первого порядка
- •7.Линейные однородные ду. Решение уравнения
- •8.Уравнение Бернулли
- •9.Уравнение в полных дифференциалах
- •10. Особые решения ду 1 порядка
- •11.Ду высших порядков. Общее и частное решение
- •16.Линейные ду 2го порядка с постоянными коэффицентаки
- •17.Линейное ду п-го порядка с постоянными коэффициентаки
- •18.Неоднородное линейное уравнение 2го порядка
- •19.Метод вариации производных постоянных
- •20.Неоднородные линейные уравнения высших порядков
- •21.Системы ду. Нормальная система
- •22.Геометрический смысл решения системы ду
- •23.Интегрирование систем ду
- •24.Системы ду с постоянными коэффициентами
- •26.Приближенные метоыд решения дифференциальных уровнений
- •27.Понятие устойчивости и асимптотической устойчивости по Ляпунову
- •28.Типы точек покоя
- •29.Числовой ряд сумма ряда
- •30.Необходимые признаки сходимости ряда
- •31.Сравнение рядов с положительными членами
- •32.Признаки сравнения. Признак Даламбера.
- •33. Признак сравнения. Признак коши
- •34. Интегральные сходимости знакопостоянных рядов
- •35. Знакочередующиеся ряды. Теорема Лейбница
- •36. Знакопеременный ряд абсолютная и условная сходимость
- •37 Функциональный ряд. Свойство равномерно сходящихся функциональных рядов
- •38. Мажорируемый ряд.
- •39. Степенной ряд. Теорема Абеля
- •40. Интервал и радиус сходимости степенного ряда
- •41. Действие над степенными рядами (свойства степенных рядов)
- •42. Ряды Тейлора и Маклорена.
- •45. Ряды Фурье. Вычисление коэффициентов ряда фурье
- •46. Разложение в ряд Фурье непериодической функции
- •47. Ряд фурье для четных и нечетных функций
- •48. Ряд фурье по ортогональным системам функций
- •49. Интеграл Фурье
- •50. Преобразование Фурье
- •51. Функции комплексного переменного
- •52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.
- •53. Условие Коши-Римана
- •54.Конформные отображения
- •55.Интеграл по комплексному переменному
- •56.Теорема Коши. Интеграл Коши
- •58.Ряд Лорана
- •57.Степенные ряды. Ряд Тейлора и Маклорена.
- •59.Классификация изолированных особых точек однозначной функции
- •61.Вычисление вычетов
- •62.Вычет функции относительно бесконечно удаленной точки
- •63.Основная теорема о вычетах
- •64.Вычисление интегралов с помощью вычетов
- •65.Оригинал и изображение по Лапласу
- •66.Свойства преобразований по Лапласу
- •67.Теорема о свертке
- •68.Нахождение оригинала по изображению
- •69.Теоремы разложения
- •70.Операционный метод решения ду и систем ду
52. Дифф-ие ф-ии комплексного переменного. Аналитические функции.
Производная
функции комплексного переменного определяется,
как и производная в действительной
области:
Здесь
z0, z _ комплексные
и f(z0) = f(z0+z) - f(z).
Используя это определение и свойства пределов, несложно убедиться в справедливости следующих правил дифференцирования.
1.
Сумма и произведение дифференцируемых
в точке функций, есть функция и
справедливы равенства:
2.
Частное дифференцируемых в точке
функций, при условии, что знаменатель
в точке не равен нулю, есть дифференцируемая
в этой точке функция, :
3. Сложная
функция f( (z))
дифференцируема в точке z0,
если в этой точке дифференцируема
функция (z),
а функция f(u)
дифференцируема в точке u0,
где u0 = (z0)
и u = (z).
При этом в точке z0 имеет
место формула:
Для элементарных функций комплексного переменного справедливы формулы дифференцирования, установленные для действительных значений аргумента. Например, рассмотрим функцию f(z) = z3. По определению производной для любой точки z, принадлежащей комплексной области, записываем:
Предел существует для любой точки z, принадлежащей комплексной области и (z3)' =3z2. Аналогично можно получить: (zn)' = nzn-1 (n - действительное число).
ПРИМЕР 1. Вычисление значения производной функции коплексного переменного в точке.
Если f(z) = f(x+iy) = u(x, y) + iv(x, y), т.е. u(x, y) = Re f(z) и v(x, y) = Im f(z), то справедливы следующие утверждения:
1. Если функция f(z) дифференцируема в точке, то в этой точке существуют частные производные ее действительной и мнимой частей u(x, y) = Re f(z), v(x, y) = Im f(z) и выполняется условие Коши-Римана:
2. Если u(x, y) и v(x, y) дифференцируемы в точке (x0, y0) (имеют непрерывные частные производные в этой точке) и выполняется условие Коши-Римана, то функция f(z) = f(x+iy) = u(x, y) + iv(x, y) дифференцируема в точке z0 = x0+ iy0.
3. Производная дифференцируемой функции может быть записана по одной из формул:
53. Условие Коши-Римана
Теорема
(необходимые условия дифференцирования).
Пусть функция
дифференцируема
в точке
.
Тогда функции
имеют
частные производные в точке
удовлетворяют
следующим условиям:
.
Условия (*) называются условиями Коши-Римана.
Доказательство.
Пусть
.
Какую бы не выбрали траекторию
отношение
будет
стремится к одному и тому же числу.
Выберем 2 траектории.
(действительная
ось)
(мнимая
ось)
.
.
Сравнивая вещественные и мнимые части первого и второго уравнения получаем условие Коши-Римана.
Пример.
54.Конформные отображения
Взаимно однозначное отображение области D на область D* (евклидова пространства или риманова многообразия) называется конформным (лат. conformis — подобный), если в окрестности любой точки D дифференциал этого преобразования есть композиция ортогонального преобразования и гомотетии.
Этот термин пришёл из комплексного анализа, изначально использовался только для конформных отображений областей плоскости.
Связанные определения
Если при конформном отображении сохраняется ориентация, то говорят о конформном отображении первого рода; если же она меняется на противоположную, то говорят о конформном отображении второго рода либо антиконформном отображении .
Две метрики
на
гладком многообразии M называются конформноэквивалентными если
существует гладкая функция
такая
что
.
В этом случае тождественное
отображение на M индуцирует
конформное отображение
.
Свойства
Конформное отображение сохраняет форму бесконечно малых фигур;
Конформное отображение сохраняет углы между кривыми в точках их пересечения (свойство сохранения углов).
Это свойство можно также взять за определение конформного отображения.
Теорема
Лиувилля: Всякое конформное отображение
области евклидова
пространства
при
можно
представить в виде конечного числа
суперпозиций — изометрий и инверсий.
Кривизна
Вейля сохраняется при конформном
отображении, то есть если
и g —
конформноэквивалентные метрические
тензоры, то
где
и W обозначают
тензоры Вейля для
и g соответственно.
Для
конформно-эквивалентых метрик
Связности
связаны следующей формулой:
Кривизны
связаны следующей формулой:
если g(X,X)
= g(Y,Y) = 1,g(X,Y) = 0,Xψ = 0 а Hessψ обозначает Гессиан
функции ψ.
Формулу
для секционных
кривизн можно записать в следующем
виде:
где f = e −
ψ.
При
вычислении скалярной
кривизны n-мерного риманова
многообразия, удобнее записывать
конформный фактор в виде
.
В этом случае: