- •Волновые свойства микроцастиц. Гипотеза де Бройля (398)
- •Опыт Дэвиссона-Джермера (398)
- •Соотношение неопределенностей (400)
- •Уравнение Шрёденгира. Волновая функция. Реш-е для св-й микроч-цы (403-409)
- •Поведение микрочастицы в «ящике» (409-412)
- •Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •Квантовый гармонический осциллятор
- •Решение ур. Шр. Для атома водорода. Квантовые числа.
- •Эффект Зеемана (420)
- •Опыт Штерна-Герлаха (423)
- •Принцип Паули. Распределение электронов в атоме по состояниям (425)
- •Плотность состояний (вики)
- •Два типа микрочастиц. Ф-я распределения (424, 441)
- •Уровень Ферми. Условие вырождения. (444)
- •Характеристики различных типов связей (431)
- •Кристаллическая решётка. Дефекты. (132-138)
- •§ 71. Типы кристаллических твердых тел
- •Колебания кристаллической решётки. Фононы (445)
- •Понятие о зонной теории твердых тел. Ме, пров-ки, изоляторы (450)
- •§ 241. Металлы, диэлектрики и полупроводники по зонной теории
- •Эффективная масса (вики)
- •§ 250. Полупроводниковые диоды и триоды (транзисторы)
- •Фотопроводимость полупроводников (459)
- •§ 266. Цепная реакция деления
- •Кварки(-522)
1
Волновые свойства микроцастиц. Гипотеза де Бройля (398)
Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.
Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия Е и импульс p, а с другой — волновые характеристики — частота и длина волны . Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов: (213.1)
Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля: (213.2)
Это соотношение справедливо для любой частицы с импульсом р.
2
Опыт Дэвиссона-Джермера (398)
Опыт Дэвиссона-Джермера — физический эксперимент по дифракции электронов, проведённый в 1927 г. американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.
Идея опыта. Проводилось исследование отражения электронов от монокристалла никеля. Установка включала в себя монокристалл никеля, сошлифованный под углом, и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучок монохроматическихэлектронов. Скорость электронов определялась напряжением U на электронной пушке:
Под углом к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме.
В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла , от скорости v электронов в пучке.
Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:
Здесь d — межплоскостное расстояние.
Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристала. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.
Трофимова: Вскоре гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон (1881—1958) и Л. Джермер (1896—1971) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки — кристалла никеля, — дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа — Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия 50 кэВ) через металлическую фольгу (толщиной 1 мкм).
3