
- •Введение
- •1Информационная безопасность компьютерных систем
- •Основные понятия и определения
- •Основные угрозы безопасности асои
- •Обеспечение безопасности асои
- •Вопросы по теме
- •2Принципы криптографической защиты информации
- •Основные понятия и опеределения
- •Традиционные симметричные криптосистемы
- •Шифры перестановки
- •2.1Шифр перестановки "скитала"
- •2.2Шифрующие таблицы
- •2.3Применение магических квадратов
- •Шифры простой замены
- •2.4Полибианский квадрат
- •2.5Система шифрования Цезаря
- •2.6Аффинная система подстановок Цезаря
- •2.7Система Цезаря с ключевым словом
- •2.8Шифрующие таблицы Трисемуса
- •2.9Система омофонов
- •Шифры сложной замены
- •2.10Шифр Гронсфельда
- •2.11Система шифрования Вижинера
- •2.12Одноразовая система шифрования
- •2.13Шифрование методом Вернама
- •Шифрование методом гаммирования
- •2.14Методы генерации псевдослучайных последовательностей чисел
- •Вопросы по теме
- •3Современные симметричные криптосистемы
- •Американский стандарт шифрования данных des
- •3.2. 0Сновные режимы работы алгоритма des
- •3.1Режим "Электронная кодовая книга"
- •3.2Режим "Сцепление блоков шифра"
- •3.5Области применения алгоритма des
- •Алгоритм шифрования данных idea
- •Отечественный стандарт шифрования данных
- •3.6Режим простой замены
- •3.7Режим гаммирования
- •3.8Режим гаммирования с обратной связью
- •3.9Bыработки имитовставки
- •Вопросы по теме
- •4Асимметричные криптосистемы
- •Концепция криптосистемы с открытым ключом
- •Однонаправленные функции
- •Криптосистема шифрования данных rsa
- •Вопросы по теме
- •5Идентификация и проверка подлинности
- •Основные понятия и концепции
- •Идентификация и механизмы подтверждения подлинности пользователя
- •Взаимная проверка подлинности пользователей
- •Протоколы идентификации с нулевой передачей знаний
- •5.1Упрощенная схема идентификации с нулевой передачей знаний
- •5.2Параллельная схема идентификации с нулевой передачей знаний
- •5.3Схема идентификации Гиллоу - Куискуотера
- •Вопросы по теме
- •6Электронная цифровая подпись
- •Проблема аутентификации данных и электронная цифровая подпись
- •Однонаправленные хэш-функции
- •Алгоритм безопасного хеширования sha
- •Однонаправленные хэш-функции на основе симметричных блочных алгоритмов
- •Отечественный стандарт хэш-функции
- •Алгоритмы электронной цифровой подписи
- •6.1Алгоритм цифровой подписи rsa
- •6.2Алгоритм цифровой подписи Эль Гамаля (egsa)
- •6.3Алгоритм цифровой подписи dsa
- •6.4Отечественный стандарт цифровой подписи
- •Вопросы по теме
- •7Управление криптографическими ключами
- •Генерация ключей
- •Хранение ключей
- •Распределение ключей
- •7.1Распределение ключей с участием центра распределения ключей
- •7.2Прямой обмен ключами между пользователями
- •Протокол skip управления криптоключами.
- •Вопросы по теме
- •8Методы и средства защиты от удаленных атак через сеть Internet
- •Особенности функционирования межсетевых экранов
- •Основные компоненты межсетевых экранов
- •8.1Фильтрующие маршрутизаторы
- •8.2Шлюзы сетевого уровня
- •8.3Шлюзы прикладного уровня
- •Основные схемы сетевой защиты на базе межсетевых экранов
- •8.4Межсетевой экран-фильтрующий маршрутизатор
- •8.5Межсетевой экран на основе двупортового шлюза
- •8.6Межсетевой экран на основе экранированного шлюза
- •8.7Межсетевой экран - экранированная подсеть
- •Применение межсетевых экранов для организации виртуальных корпоративных сетей
- •Программные методы защиты
- •Вопросы по теме
- •9Резервное хранение информации. Raid-массивы
- •Вопросы по теме
- •10Биометрические методы защиты
- •Признаки личности в системах защиты информации
- •10.1Отпечатки пальцев
- •10.2Черты лица
- •10.3Геометрия кисти руки
- •10.4Рисунок радужной оболочки глаза
- •10.5Рисунок сосудов за сетчаткой глаза
- •10.6Расположение вен на руке
- •10.7Динамические характеристики почерка
- •10.8Особенности речи
- •10.9Динамика ударов по клавишам
- •10.10 Другие характеристики
- •Устройства для снятия биометрических характеристик
- •Системы распознавания личности
- •Проверка личности при помощи биометрических характеристик
- •Вопросы по теме
- •11Программы с потенциально опасными последствиями
- •Троянский конь
- •Логическая бомба
- •Программные закладки
- •Атака салями
- •Вопросы по теме
- •12Защита от копирования
- •Привязка к дискете
- •12.1Перестановка в нумерации секторов
- •12.2Введение одинаковых номеров секторов на дорожке
- •12.3Введение межсекторных связей
- •12.4Изменение длины секторов
- •12.5Изменение межсекторных промежутков
- •12.6Использование дополнительной дорожки
- •12.7Введение логических дефектов в заданный сектор
- •12.8Изменение параметров дисковода
- •12.9Технология "ослабленных" битов
- •12.10 Физическая маркировка дискеты
- •Применение физического защитного устройства
- •"Привязка" к компьютеру
- •12.11Физические дефекты винчестера
- •12.12Дата создания bios
- •12.13Версия используемой os
- •12.14Серийный номер диска
- •Конфигурация системы и типы составляющих ее устройств
- •Опрос справочников
- •Введение ограничений на использование программного обеспечения
- •Вопросы по теме
- •13Защита исходных текстов и двоичного кода
- •Противодействие изучению исходных текстов
- •13.1Динамическое ветвление
- •13.2Контекстная зависимость
- •13.3Хуки
- •Противодействие анализу двоичного кода
- •Вопросы по теме
- •14Операционные системы
- •Сравнение nt и unix-систем
- •15.2Создание "вспомогательной" программы, взаимодействующей с имеющейся
- •15.3Декомпилирование программы
- •15.4Копирование программного обеспечения
- •15.5Использование или распространение противозаконных программ и их носителей
- •15.6Деятельность в компьютерной сети
- •Компьютер и/или сеть являются средством достижения целей.
- •Вопросы по теме Лабораторные работы по курсу «Информационная безопасность и защита информации»
- •Лабораторная работа № 1. «Реализация дискреционной модели политики безопасности»
- •Лабораторная работа № 2 . «Количественная оценка стойкости парольной защиты»
- •Лабораторная работа №3. «Создание коммерческой версии приложения»
- •Лабораторная работа №4. «Защита от копирования. Привязка к аппаратному обеспечению. Использование реестра»
- •2. Реестр Windows
- •Литература
Шифры перестановки
При шифровании перестановкой символы шифруемого текста переставляются по определенному правила в пределах блока этого текстf. Шифры перестановки являются оамыми простыми и, вероятно, самыми древними шифрами.
2.1Шифр перестановки "скитала"
Известно, что в V веке до нашей эры правители Спарты, наиболее воинственного из греческих государств, имели хорошо отработанную систему секретной военной связи и шифровали свои послания с помощью cкитала, первого простейшего криптографического устройства, реализующего метод простом перестановки.
Шифрование выполнялось следующим образом. На стержень цилиндрической формы, который назывался скитала, наматывали спиралью (виток к витку) полоску пергамента и писали на ней вдоль стержня несколько строк текста сообщения. Затем снимали со стержня полоску пергамента с написанным текстом. Буквы на этой полоске оказывались расположенными хаотично. Для расшифрования такого шифртекста нужно не только знать правило шифрования, но и обладать ключом в виде стержня определенного диаметра. Зная только вид шифра, но не имея ключа, расшифровать сообщение было непросто. Шифр скитала многократно совершенствовался в последующие времена.
2.2Шифрующие таблицы
С начала эпохи Возрождения (конец XIV столетия) начала возрождаться и криптография. Наряду с традиционными применениями криптографии в политике, дипломатии и военном деле появляются и другие задачи - защита интеллектуальной собственности от преследований инквизиции или заимствовании злоумышленников. В разработанных шифрах перестановки того времени применяются шифрующие таблицы, которые в сущности задают правила перестановки букв в сообщении.
В качестве ключа в шифрующих таблицах используются:
размер таблицы;
слово или фраза, задающие перестановку;
особенности структуры таблицы.
Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Этот метод шифрования сходен с шифром скитала. Например, сообщение
ТЕРМИНАТОР ПРИБЫВАЕТ СЕДЬМОГО В ПОЛНОЧЬ
записывается в таблицу поочередно по столбцам. Результат заполнения таблицы из 5 строк и 7 столбцов показан на рис 2.4.
После заполнения таблицы текстом сообщения по столбцам для формирования шифртекста считывают содержимое таблицы по строкам. Если шифртекст записывать группами по пять букв, получается такое шифрованное сообщение:
ТНПВЕ ГЛЕАР АДОНР ТИЕЬВ ОМОБТ МПЧИР ЫСООЬ
Т |
Н |
П |
В |
Е |
Г |
Л |
Е |
А |
Р |
А |
Д |
О |
Н |
Р |
Т |
И |
Е |
Ь |
В |
О |
М |
О |
Б |
Т |
М |
П |
Ч |
И |
Р |
Ы |
С |
О |
О |
Ь |
Рисунок 2.4. Заполнение таблицы из 5 строк и 7 столбцов
Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. Следует заметить, что объединение букв шифртекста в 5-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.
Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу. Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.
Применим в качестве ключа, например, слово ПЕЛИКАН, а текст сообщения возьмем из предыдущего примера. На рис. 2.5 показаны две таблицы, заполненные текстом сообщения и ключевым словом, при этом левая таблица соответствует заполнению до перестановки, а правая таблица - заполнению после перестановки.
А |
Е |
И |
К |
Л |
Н |
П |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
Г |
Н |
В |
Е |
П |
Л |
Т |
О |
А |
А |
Д |
Р |
Н |
Е |
В |
Т |
Е |
Ь |
И |
О |
Р |
П |
О |
Т |
М |
Б |
Ч |
М |
О |
Р |
С |
О |
Ы |
Ь |
И |
П |
Е |
Л |
И |
К |
А |
Н |
7 |
2 |
5 |
3 |
4 |
1 |
6 |
Т |
Н |
П |
В |
Е |
Г |
Л |
Е |
А |
Р |
А |
Д |
О |
Н |
Р |
Т |
И |
Е |
Ь |
В |
О |
М |
О |
Б |
Т |
М |
П |
Ч |
И |
Р |
Ы |
С |
О |
О |
Ь |
До перестановки После перестановки
Рисунок 2.5. Таблицы, заполненные ключевым словом и текстом сообщения
В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если бы в ключе встретились одинаковые буквы, они бы были понумерованы слева направо. В правой таблице столбцы переставлены в соответствии с упорядоченными номерами букв ключа.
При считывании содержимого правой таблицы по строкам и записи шифртекста группами по пять букв получим шифрованное сообщение:
ГНВЕП ЛТООА ДРНЕВ ТЕЬИО РПОТМ БЧМОР СОЫЬИ
Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже прошло шифрование. Такой метод шифрования называется двойной перестановкой. В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и отдельно для строк. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровании порядок перестановок должен быть обратным.
Пример выполнения шифрования методом двойной перестановки показан на рис. 2.6. Если считывать шифртекст из правой. таблицы построчно блоками по четыре буквы, то получится следующее: ТЮАЕ ООГМ РЛИП ОЬСВ
Ключом к шифру двойной перестановки служит последовательность номеров столбцов и номеров строк исходной таблицы (в нашем, примере последовательности 4132 и 3142 соответственно).
|
4 |
1 |
3 |
2 |
3 |
П |
Р |
И |
Л |
1 |
Е |
Т |
А |
Ю |
4 |
В |
О |
С |
Ь |
2 |
М |
О |
Г |
0 |
|
1 |
2 |
3 |
4 |
3 |
Р |
Л |
И |
П |
1 |
Т |
Ю |
А |
Е |
4 |
0 |
Ь |
С |
В |
2 |
0 |
0 |
Г |
М |
|
1 |
2 |
3 |
4 |
1 |
Т |
Ю |
А |
Е |
2 |
О |
О |
Г |
М |
3 |
Р |
Л |
И |
П |
4 |
О |
Ь |
С |
В |
Исходная таблица Перестановка столбцов Перестановка строк
Рис. 2.6. Пример выполнения шифрования методом двойной перестановки
Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы:
для таблицы 3х3 36 вариантов;
для таблицы 4х4 576 вариантов;
для таблицы 5х5 14400 вариантов.
Однако двойная перестановка не отличается высокой стойкостью и сравнительно просто "взламывается" при любом размере таблицы шифрования.