
- •Введение
- •1Информационная безопасность компьютерных систем
- •Основные понятия и определения
- •Основные угрозы безопасности асои
- •Обеспечение безопасности асои
- •Вопросы по теме
- •2Принципы криптографической защиты информации
- •Основные понятия и опеределения
- •Традиционные симметричные криптосистемы
- •Шифры перестановки
- •2.1Шифр перестановки "скитала"
- •2.2Шифрующие таблицы
- •2.3Применение магических квадратов
- •Шифры простой замены
- •2.4Полибианский квадрат
- •2.5Система шифрования Цезаря
- •2.6Аффинная система подстановок Цезаря
- •2.7Система Цезаря с ключевым словом
- •2.8Шифрующие таблицы Трисемуса
- •2.9Система омофонов
- •Шифры сложной замены
- •2.10Шифр Гронсфельда
- •2.11Система шифрования Вижинера
- •2.12Одноразовая система шифрования
- •2.13Шифрование методом Вернама
- •Шифрование методом гаммирования
- •2.14Методы генерации псевдослучайных последовательностей чисел
- •Вопросы по теме
- •3Современные симметричные криптосистемы
- •Американский стандарт шифрования данных des
- •3.2. 0Сновные режимы работы алгоритма des
- •3.1Режим "Электронная кодовая книга"
- •3.2Режим "Сцепление блоков шифра"
- •3.5Области применения алгоритма des
- •Алгоритм шифрования данных idea
- •Отечественный стандарт шифрования данных
- •3.6Режим простой замены
- •3.7Режим гаммирования
- •3.8Режим гаммирования с обратной связью
- •3.9Bыработки имитовставки
- •Вопросы по теме
- •4Асимметричные криптосистемы
- •Концепция криптосистемы с открытым ключом
- •Однонаправленные функции
- •Криптосистема шифрования данных rsa
- •Вопросы по теме
- •5Идентификация и проверка подлинности
- •Основные понятия и концепции
- •Идентификация и механизмы подтверждения подлинности пользователя
- •Взаимная проверка подлинности пользователей
- •Протоколы идентификации с нулевой передачей знаний
- •5.1Упрощенная схема идентификации с нулевой передачей знаний
- •5.2Параллельная схема идентификации с нулевой передачей знаний
- •5.3Схема идентификации Гиллоу - Куискуотера
- •Вопросы по теме
- •6Электронная цифровая подпись
- •Проблема аутентификации данных и электронная цифровая подпись
- •Однонаправленные хэш-функции
- •Алгоритм безопасного хеширования sha
- •Однонаправленные хэш-функции на основе симметричных блочных алгоритмов
- •Отечественный стандарт хэш-функции
- •Алгоритмы электронной цифровой подписи
- •6.1Алгоритм цифровой подписи rsa
- •6.2Алгоритм цифровой подписи Эль Гамаля (egsa)
- •6.3Алгоритм цифровой подписи dsa
- •6.4Отечественный стандарт цифровой подписи
- •Вопросы по теме
- •7Управление криптографическими ключами
- •Генерация ключей
- •Хранение ключей
- •Распределение ключей
- •7.1Распределение ключей с участием центра распределения ключей
- •7.2Прямой обмен ключами между пользователями
- •Протокол skip управления криптоключами.
- •Вопросы по теме
- •8Методы и средства защиты от удаленных атак через сеть Internet
- •Особенности функционирования межсетевых экранов
- •Основные компоненты межсетевых экранов
- •8.1Фильтрующие маршрутизаторы
- •8.2Шлюзы сетевого уровня
- •8.3Шлюзы прикладного уровня
- •Основные схемы сетевой защиты на базе межсетевых экранов
- •8.4Межсетевой экран-фильтрующий маршрутизатор
- •8.5Межсетевой экран на основе двупортового шлюза
- •8.6Межсетевой экран на основе экранированного шлюза
- •8.7Межсетевой экран - экранированная подсеть
- •Применение межсетевых экранов для организации виртуальных корпоративных сетей
- •Программные методы защиты
- •Вопросы по теме
- •9Резервное хранение информации. Raid-массивы
- •Вопросы по теме
- •10Биометрические методы защиты
- •Признаки личности в системах защиты информации
- •10.1Отпечатки пальцев
- •10.2Черты лица
- •10.3Геометрия кисти руки
- •10.4Рисунок радужной оболочки глаза
- •10.5Рисунок сосудов за сетчаткой глаза
- •10.6Расположение вен на руке
- •10.7Динамические характеристики почерка
- •10.8Особенности речи
- •10.9Динамика ударов по клавишам
- •10.10 Другие характеристики
- •Устройства для снятия биометрических характеристик
- •Системы распознавания личности
- •Проверка личности при помощи биометрических характеристик
- •Вопросы по теме
- •11Программы с потенциально опасными последствиями
- •Троянский конь
- •Логическая бомба
- •Программные закладки
- •Атака салями
- •Вопросы по теме
- •12Защита от копирования
- •Привязка к дискете
- •12.1Перестановка в нумерации секторов
- •12.2Введение одинаковых номеров секторов на дорожке
- •12.3Введение межсекторных связей
- •12.4Изменение длины секторов
- •12.5Изменение межсекторных промежутков
- •12.6Использование дополнительной дорожки
- •12.7Введение логических дефектов в заданный сектор
- •12.8Изменение параметров дисковода
- •12.9Технология "ослабленных" битов
- •12.10 Физическая маркировка дискеты
- •Применение физического защитного устройства
- •"Привязка" к компьютеру
- •12.11Физические дефекты винчестера
- •12.12Дата создания bios
- •12.13Версия используемой os
- •12.14Серийный номер диска
- •Конфигурация системы и типы составляющих ее устройств
- •Опрос справочников
- •Введение ограничений на использование программного обеспечения
- •Вопросы по теме
- •13Защита исходных текстов и двоичного кода
- •Противодействие изучению исходных текстов
- •13.1Динамическое ветвление
- •13.2Контекстная зависимость
- •13.3Хуки
- •Противодействие анализу двоичного кода
- •Вопросы по теме
- •14Операционные системы
- •Сравнение nt и unix-систем
- •15.2Создание "вспомогательной" программы, взаимодействующей с имеющейся
- •15.3Декомпилирование программы
- •15.4Копирование программного обеспечения
- •15.5Использование или распространение противозаконных программ и их носителей
- •15.6Деятельность в компьютерной сети
- •Компьютер и/или сеть являются средством достижения целей.
- •Вопросы по теме Лабораторные работы по курсу «Информационная безопасность и защита информации»
- •Лабораторная работа № 1. «Реализация дискреционной модели политики безопасности»
- •Лабораторная работа № 2 . «Количественная оценка стойкости парольной защиты»
- •Лабораторная работа №3. «Создание коммерческой версии приложения»
- •Лабораторная работа №4. «Защита от копирования. Привязка к аппаратному обеспечению. Использование реестра»
- •2. Реестр Windows
- •Литература
3.2. 0Сновные режимы работы алгоритма des
Алгоритм DES вполне подходит как для шифрования, так и для аутентификации данных. Он позволяет непосредственно преобразовывать 64-битовый входной открытый текст в 64-битовый выходной шифрованный текст, однако данные редко ограничиваются 64 разрядами.
Чтобы воспользоваться алгоритмом DES для решения разнообразных криптографических задач, разработаны четыре рабочих режима:
электронная кодовая книга ЕСВ (Electronic Code Book);
сцепление блоков шифра СВС (Cipher Block Chaining);
обратная связь по шифртексту CFB (Cipher Feed Back);
обратная связь по выходу OFB (Output Feed Back).
3.1Режим "Электронная кодовая книга"
Длинный файл разбивают на 64-битовые отрезки (блоки) по 8 байтов. Каждый из этих блоков шифруют независимо с использованием одного и того же ключа шифрования (рис.3.5).
Основное достоинство - простота реализации. Недостаток относительно слабая устойчивость против квалифицированных криптоаналитиков. Из-за фиксированного характера шифрования при ограниченной длине блока 64 бита возможно проведение криптоанализа "со словарем". Блок такого размера может повториться в сообщении вследствие большой избыточности в тексте на естественном языке. Это приводит к тому, что идентичные блоки открытого текста в сообщении будут представлены идентичными блоками шифртекста, что дает криптоаналитику некоторую информацию о содержании сообщения.
В частности, не рекомендуется использовать данный режим работы для шифрования EXE файлов, потому что первый же блок - заголовок файла, является вполне удачным началом для взлома всего шифра.
Рисунок З.5. Схема алгоритма DES в режиме электронной кодовой книги
3.2Режим "Сцепление блоков шифра"
В этом режиме исходный файл M также, как и в режиме ECB, разбивается на 64-битовые блоки: M = M(1)M(2)...M(n). Первый блок M(1) складывается по модулю 2 с 64-битовым начальным вектором IV, который меняется ежедневно и держится в секрете. Полученная сумма затем шифруется с использованием ключа DES, известного и отправителю, и получателю информации. Полученный 64-битовый блок шифртекста C(1) складывается по модулю 2 со вторым блоком исходного текста, результат шифруется и получается второй 64-битовый блок шифртекста C(2) и т.д. Процедура повторяется до тех пор, пока не будут обработаны все блоки исходного текста (рис.3.6).
Рисунок 3.6. Работа алгоритма в режиме CBC
Таким образом для всех i = 1...n блок шифртекста C(i) определяется следующим образом:
C(i) = DES(M(i) xor C(i-1)),
C(0) = IV - начальное значение шифра, равное начальному вектору.
Расшифрование выполняется следующим образом:
M(i) = C(i-1) xor DES-1(C(i)),
C(0) = IV - начальное значение шифра, равное начальному вектору.
Особенность данного режима состоит в том, что он не позволяет накапливаться ошибкам при передаче. Блок M(i) является функцией только C(i-1) и C(i). Поэтому ошибка при передаче приведет к потере только двух блоков исходного текста.
3.3DES-CFB
В этом режиме размер блока может отличаться от 64. Исходный файл M считывается последовательными t-битовыми блоками (t <= 64): M = M(1)M(2)...M(n) (остаток дописывается нулями или пробелами).
64-битовый сдвиговый регистр (входной блок) вначале содержит вектор инициализации IV, выравненный по правому краю. Для каждого сеанса шифрования используется новый IV.
Для всех i = 1...n блок шифртекста C(i) определяется следующим образом:
C(i) = M(i) xor P(i-1),
где P(i-1) - старшие t битов операции DES(С(i-1)), причем C(0)=IV.
Обновление сдвигового регистра осуществляется путем удаления его старших t битов и дописывания справа C(i).
Восстановление зашифрованных данных также не представляет труда: P(i-1) и C(i) вычисляются аналогичным образом и
M(i) = C(i) xor P(i-1).
Блок-схема режима CFB приведена на рис.3.7.
Рисунок 3.7. Работа алгоритма DES в режиме CFB
3.4DES-OFB
Режим OFB очень похож на режим CFB.
Отличие от режима CFB состоит только в методе обновления сдвигового регистра. В данном случае это осуществляется путем удаления его старших t битов и дописывания справа P(i-1) (рис.3.8).
Рисунок 3.8. Блок-схема алгоритма DES в режиме OFB
Каждому из рассмотренных режимов свойственны свои достоинства и недостатки, что обусловливает области их применения.
Режим ECB хорошо подходит для шифрования ключей. Режимы CBC и CFB пригодны для аутентификации данных. Режим CFB, кроме того, предназначен для шифрования отдельных символов. Режим OFB нередко используется в спутниковых системах связи.