Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вышка.4, 13-18,28-30docx.docx
Скачиваний:
0
Добавлен:
21.04.2019
Размер:
103.59 Кб
Скачать

16. Функция одной случайной величины.

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

Требуется определить закон распределения случайной величины , зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Пусть — дискретная случайная величина, имеющая ряд распределения

Тогда также дискретная случайная величина с возможными значениями . Если все значения различны, то для каждого события и тождественны. Следовательно,

и искомый ряд распределения имеет вид

Если же среди чисел есть одинаковые, то каждой группе одинаковых значений нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения случайной величины , найти плотность распределения случайной величины . При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция является монотонно возрастающей, непрерывной и дифференцируемой на интервале , на котором лежат все возможные значения величины . Тогда обратная функция существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

17. Случайный вектор. Система случайных величин.

Пусть на одном и том же вероятностном пространстве ( F, P) задано n случайных величин , , …, . Совокупность случайных величин  называется многомерной (n-мерной) случайной величиной, или (n-мерным) случайным вектором

Рассмотренные выше случайные величины были одномерными, т.е. определялись одним числом, однако, существуют также случайные величины, которые определяются двумя, тремя и т.д. числами. Такие случайные величины называются двумерными, трехмерными и т.д.

 В зависимости от типа, входящих в систему случайных величин, системы могут быть дискретными, непрерывными или смешанными, если в систему входят различные типы случайных величин.

            Более подробно рассмотрим системы двух случайных величин.

Определение. Законом распределения системы случайных величин называется соотношение, устанавливающее связь между областями возможных значений системы случайных величин и вероятностями появления системы в этих областях.

  Определение. Функцией распределения системы двух случайных величин называется функция двух аргументов F(x, y), равная вероятности совместного выполнения двух неравенств X<x, Y<y.

 Отметим следующие свойства функции распределения системы двух случайных величин:

  1. Если один из аргументов стремится к плюс бесконечности, то функция распределения системы стремится к функции распределения одной случайной величины, соответствующей другому аргументу.

  2. Если оба аргумента стремятся  к бесконечности, то функция распределения системы стремится к единице.

  3. При стремлении одного или обоих аргументов к минус бесконечности функция распределения стремится к нулю.

  4. Функция распределения является неубывающей функцией по каждому аргументу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]