- •1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
- •3.Доказательства роли ядра и хромосом в явл. Насл-ти. Роль ц/п факторов в передаче насл. Инф.
- •4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
- •5. Кариотип. Парность хромосом в соматических клетках. Гомологичные хромосомы. Специфичность морфологии и числа хромосом.
- •6. Молекулярные основы насл-ти. 1 ген-1 полипептид. Белок как элем-ый признак.
- •7. Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура днк и рнк. Модель днк Уотсона и Крика.
- •8. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: днк — рнк — белок.
- •9. Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
- •10.Репликация хромосом. Политения. Онтогенетическая изменчивость хромосом.
- •11. Основные закономерности наследования. Цели и принципы генетического анализа. Методы: гибридологический, мутационный, цитогенетический, генеалогический, популяционный, близнецовый, биохимический.
- •13. Закономерности наследования при моногибридном скрещивании, открытые г. Менделем. Факториальная гипотеза г. Менделя. Закон "чистоты гамет".
- •16. Отклонения от менделевских расщеплений при ди- и полигенном контроле признаков. Неаллельные взаимодействия: комплементарность, эпистаз, полимерия.
- •17. Биохимические основы неаллельных взаимодействий. Плейотропное действие генов. Пенентрантность и экспрессивность.
- •18. Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения пола. Наследование признаков, сцепленных с полом.
- •19. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Балансовая теория определения пола. Гинандроморфизм.
- •20.Значение работ школы т. Моргана в изучении сцепленного наследования признаков. Особенности наследования при сцеплении. Группы сцепления.
- •21.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на стадии четырех нитей. Значение анализирующего скрещивания и тетрадного анализа при изучении кроссинговера.
- •22. Цитологические доказательства кроссинговера. Множественные перекресты. Интерференция. Линейное расположение генов в хромосомах.
- •23. Основные положения хромосомной теории наследственности по т.Моргану. Генетический карты, принцип их построения у эукариот. Использование данных цитогенетического анализа для локализации генов.
- •24. Цитологические карты хромосом. Митотический кроссинговер и его использование для картирования хромосом. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •25. Организация генетического аппарата у бактерий. Представление о плазмидах, эписомах и мигрирующих генетических элементах (инсерционные последовательности, транспозоны).
- •28. Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и специфическая трансдукция. Использование трансформации и трансдукции для картирования генов.
- •29. Закономерности нехромосомного наследования, отличие от хромосомного наследования. Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •30. Материнский эффект цитоплазмы. Наследование завитка у моллюсков. Пластидная наследственность. Наследование пестролистности у растений.
- •31. Наследование устойчивости к антибиотикам у хламидомонады. Митохондриальная наследственность. Наследование дыхательной недостаточности у дрожжей и нейроспоры.
- •35. Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции. Геномные изменения: полиплоидия, анеуплоидия.
- •36. Автополиплоиды, особенности мейоза и характер наследования. Аллополиплоиды. Амфидиплоидия как механизм возникновения плодовитых аллополиплоидов. Роль полиплоидии в эволюции и селекции.
- •37. Анеуплоидия: нуллисомики, моносомики, нолисомики их использование в генетическом анализе. Особенности мейоза и образования гамет у анеуплоидов, их жизнеспособность и плодовитось.
- •41. Спонтанный и индуцированный мутационный процесс. Радиационный мутагенез: генетические эффекты ионизирующего излучения и уф-лучей. Закономерности «доза эффект».
- •42. Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования.
- •43. Представление школы Моргана о строении и функции гена. Функциональный и рекомбинационный критерии аллелизма. Множественный аллелизм.
- •44. Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональный тест на аллелизм (цис-транс тест).
- •46. Молекулярно-генетические подходы в исследовании тонкого строения генов. Интрон-экзонная организация генов эукариот, сплайсинг.
- •49. Генетический контроль и механизмы эксцизионной пострепликативной репарации, репарация неспаренных оснований, репаративный синтез днк.
- •50. Типы структурных повреждений в днк и репарационные процессы. Нарушения в процессах репарации как причина наследственных молекулярных болезней.
- •51. Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».
- •58) Задачи и методология генетической инженерии. Методы выделения и синтеза генов. Понятие о векторах. Векторы на основе плазмид и днк фагов.
4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
Клеточный цикл – 4 периода: пресинтетический (G1) – в это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом, в ядре клетки набор генетического материала = 2n2с, период синтеза (S) – происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков, набор генетического материала (хроматина) становится 2n4с, постсинтетический (G2) – клетка запасается энергией, синтезируются белки ахроматинового веретена, идет подготовка к митозу, и митоз (М). Митоз: 1 деление. Профаза: Спирализация хромосом, каждая сост. из 2 хроматид (результат S периода). Исчезают ядрышки и ядерная мембрана. Метафаза: Хромосомы достигают экватора клетки, появляются нити ахроматинового веретена. Центриоли находятся на полюсах клетки. Число и форма хромосом, наблюдаемых в метафазе, характеризуют кариотип вида. Анафаза: Деление цетромер, удерживавших хроматиды в хромосоме. Дочерние хромосомы расходится к противоположным полюсам. Телофаза: Формируется ядерная мембрана и ядрышки, хромосомы деспирализуются, клетки животных разделяются перетяжкой, у растений образуется фрагмопласт. Мейоз: 2 деления. Профаза 1: Лептотена Появление тонких нитей хромосом (хромосомы удвоены). Зиготена Конъюгация хромосом. Пахитена Видны конъюгированные хромосомы. Диплотена Начало отталкивания гомологов – различима фигура, похожая на Х. Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку. Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид. Телофаза 1 может отсутствовать, или ядро может восстанавливаться. Профаза 2, Метафаза 2: по митотическому типу. Анафаза 2: Расхождение хроматид удвоенных хромосом. Телофаза 2: 4 гаплоидных ядра. Генетическая информация содержится в хромосомах. При делении клетки митозом в дочерние клетки попадает одинаковый набор хромосом, образуется клон. При мейозе происходит кроссинговер (генетическая рекомбинация), в дочерние клетки попадают измененные хромосомы с гаплоидным набором хромосом. Независимое расхождение хромосом при мейозе и независимая встреча гамет – основа генетической изменчивости. Способствует генетическому разнообразию особей вида благодаря кроссинговеру и комбинативной изменчивости; создает предпосылки к освоению разнообразных условий обитания, обеспечивает эволюционные перспективы видов.
5. Кариотип. Парность хромосом в соматических клетках. Гомологичные хромосомы. Специфичность морфологии и числа хромосом.
Кариотип – хромосомный комплекс вида со всеми его особенностями: число и размерами хромосом, их морфологией, наличием видимых под световым микроскопом деталей строения, перетяжек, спутников, соотношением длин плеч, чередование эу- и гетерохроматина. Важнейшим признаком кариотипа служит наличие пар гомологичных хромосом. Оба гомолога в паре имеют одинаково генетическое содержание, размер, положение центромер, рисунок хромомеров. Пары гомологов индивидуальны по этим особенностям и отличаются от хромосом любой другой пары. Хромосомы из разных пар называют негомологичными. При описании кариотипа сначала указ-ют общее число хр-м и набор полов. хр-м, затем отмечают какая хр-а лишняя или какой не хватает. Указ-ся номер хр-ы и обозн-ся плечо, в к-ом произошли изменения и указ-т сегмент. Правила хромосом 1. Постоянство числа хромосом. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека - 46, у кошки - 38, у мушки дрозофилы - 8, у собаки - 78. у курицы - 78). 2. Парность хромосом. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери. 3. Правило индивидуальности хромосом. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос. 4. Правило непрерывности. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде, таким о6разом, хромосомы непепрывны: от хромосомы образуется хромосома. Все хромосомы подразделяются на аутосомы и половые хромосомы. Половые - это 23тья пара хромосом, определяющая формирование мужского и женского организма. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. В соматических клетках присутствует двойной - диплоидный набор хромосом, в половых - гаплоидный (одинарный). Хр-ы распол-ся в порядке уменьш-я их длины. Все хр-ы разделены на 7 гр., к-ые были обозн-ы буквами англ. алф-та от А до G. Все пары хр-м нумеруют арабск. цифрами. Различают четыре типа строения хромосом: • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце); • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом); • субметацентрические (с плечами неравной длины, напоминающие по форме букву L); • метацентрические (V-образные хромосомы, обладающие плечами равной длины). Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода.
