
- •1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
- •3.Доказательства роли ядра и хромосом в явл. Насл-ти. Роль ц/п факторов в передаче насл. Инф.
- •4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
- •5. Кариотип. Парность хромосом в соматических клетках. Гомологичные хромосомы. Специфичность морфологии и числа хромосом.
- •6. Молекулярные основы насл-ти. 1 ген-1 полипептид. Белок как элем-ый признак.
- •7. Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура днк и рнк. Модель днк Уотсона и Крика.
- •8. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: днк — рнк — белок.
- •9. Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
- •10.Репликация хромосом. Политения. Онтогенетическая изменчивость хромосом.
- •11. Основные закономерности наследования. Цели и принципы генетического анализа. Методы: гибридологический, мутационный, цитогенетический, генеалогический, популяционный, близнецовый, биохимический.
- •13. Закономерности наследования при моногибридном скрещивании, открытые г. Менделем. Факториальная гипотеза г. Менделя. Закон "чистоты гамет".
- •16. Отклонения от менделевских расщеплений при ди- и полигенном контроле признаков. Неаллельные взаимодействия: комплементарность, эпистаз, полимерия.
- •17. Биохимические основы неаллельных взаимодействий. Плейотропное действие генов. Пенентрантность и экспрессивность.
- •18. Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения пола. Наследование признаков, сцепленных с полом.
- •19. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Балансовая теория определения пола. Гинандроморфизм.
- •20.Значение работ школы т. Моргана в изучении сцепленного наследования признаков. Особенности наследования при сцеплении. Группы сцепления.
- •21.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на стадии четырех нитей. Значение анализирующего скрещивания и тетрадного анализа при изучении кроссинговера.
- •22. Цитологические доказательства кроссинговера. Множественные перекресты. Интерференция. Линейное расположение генов в хромосомах.
- •23. Основные положения хромосомной теории наследственности по т.Моргану. Генетический карты, принцип их построения у эукариот. Использование данных цитогенетического анализа для локализации генов.
- •24. Цитологические карты хромосом. Митотический кроссинговер и его использование для картирования хромосом. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •25. Организация генетического аппарата у бактерий. Представление о плазмидах, эписомах и мигрирующих генетических элементах (инсерционные последовательности, транспозоны).
- •28. Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и специфическая трансдукция. Использование трансформации и трансдукции для картирования генов.
- •29. Закономерности нехромосомного наследования, отличие от хромосомного наследования. Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •30. Материнский эффект цитоплазмы. Наследование завитка у моллюсков. Пластидная наследственность. Наследование пестролистности у растений.
- •31. Наследование устойчивости к антибиотикам у хламидомонады. Митохондриальная наследственность. Наследование дыхательной недостаточности у дрожжей и нейроспоры.
- •35. Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции. Геномные изменения: полиплоидия, анеуплоидия.
- •36. Автополиплоиды, особенности мейоза и характер наследования. Аллополиплоиды. Амфидиплоидия как механизм возникновения плодовитых аллополиплоидов. Роль полиплоидии в эволюции и селекции.
- •37. Анеуплоидия: нуллисомики, моносомики, нолисомики их использование в генетическом анализе. Особенности мейоза и образования гамет у анеуплоидов, их жизнеспособность и плодовитось.
- •41. Спонтанный и индуцированный мутационный процесс. Радиационный мутагенез: генетические эффекты ионизирующего излучения и уф-лучей. Закономерности «доза эффект».
- •42. Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования.
- •43. Представление школы Моргана о строении и функции гена. Функциональный и рекомбинационный критерии аллелизма. Множественный аллелизм.
- •44. Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональный тест на аллелизм (цис-транс тест).
- •46. Молекулярно-генетические подходы в исследовании тонкого строения генов. Интрон-экзонная организация генов эукариот, сплайсинг.
- •49. Генетический контроль и механизмы эксцизионной пострепликативной репарации, репарация неспаренных оснований, репаративный синтез днк.
- •50. Типы структурных повреждений в днк и репарационные процессы. Нарушения в процессах репарации как причина наследственных молекулярных болезней.
- •51. Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».
- •58) Задачи и методология генетической инженерии. Методы выделения и синтеза генов. Понятие о векторах. Векторы на основе плазмид и днк фагов.
1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
Ген - это участок молекулы ДНК, дающий информацию о синтезе определенного полипептида или нуклеиновой кислоты. Набор генов организма, которые он получает от своих родителей, называется генотипом, а содержание генов в гаплоидном наборе хромосом — геномом. Аллельные гены – гены, определяющие развитие альтернативных признаков. Они располагаются в одинаковых локусах гомологичных хромосом. Локус – место локализации гена в хромосоме. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называется доминантным, а не проявляющийся – рецессивным. Доминантность – это способность подавлять одним аллелем действие другого в гетерозиготном состоянии. Аллель – форма существования (проявления) гена. Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены, такой организм называется гомозиготным, так как он образует один тип гамет и не дает расщепление при скрещивании с себе подобным. Если в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм называется гетерозиготным по данному признаку. а) ген как единица рекомбинации. Ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Т.о. ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма; б) ген как единица мутирования. Ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию. в) ген как единица функции. Ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта. Совокупность всех внешних и внутренних признаков организма, развивающихся на основе генотипа под воздействием факторов среды называется фенотипом, а отдельный признак, определяемый одним геном — феном. Под признаком понимают единицу морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности организма, т.е. любое отдельное качество или свойство, по которому одну особь можно отличить от другой. Наследственность — свойство живых систем сохранять из поколения в поколение сходные признаки и обеспечивать специфический характер индивидуального развития в определенных условиях среды. Изменчивость — свойство живых систем приобретать новые признаки, отличающие их от родительских форм (строение и функции систем органов и особенности индивидуального развития), заключающееся в изменении наследственных задатков - генов и в изменении их проявления под влиянием внешней среды. Наследственность и изменчивость — два противоположных свойства, тесно связанные с эволюционным процессом. Наследственность консервативна и обеспечивает сохранение видовых признаков. Благодаря изменчивости особи вида способны к адаптации и выживанию в изменяющихся условиях окружающей среды. Появившиеся благодаря изменчивости новые признаки, могут играть роль в эволюции только при сохранении их в последующих поколениях, т.е. при наследовании. Генетическая информация определяет потенции развития свойств и признаков организма, которые реализуются в определенных условиях среды. Одна и та же наследственная информация в разных условиях проявляется по-разному. Примером могут служить монозиготные близнецы, воспитываемые в разных семьях. Следовательно, наследуется не готовый признак, а определенный тип реакции на воздействия внешней среды. 1. Генотипическая (наследственная) изменчивость – изменчивость, обусловленная возникновением мутаций и их комбинаций при скрещивании. Изменение свойств и признаков организма может быть обусловлено изменением гена или других элементов генетического аппарата клетки. Такие изменения называют мутациями. Мутации возникают скачкообразно в отдельных половых клетках и сохраняются в поколениях. Примером может служить появление в потомстве гомозиготных белых кроликов черного, у остистой пшеницы безостых форм, у зеленой водоросли хлореллы салатных и т. д. Процесс образования мутаций называется мутагенезом, а факторы, вызывающие мутации - мутагенами. Мутагены первоначально воздействуют на генетический материал особи, вследствие чего может измениться фенотип. Генные мутации. Генные, или точечные, мутации - наиболее часто встречающийся класс мутационных изменений. Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Хромосомные мутации - это перестройки хромосом. Участок хромосомы может удвоиться или, наоборот, выпасть, он может переместиться на другое место и т.д. Геномные мутации. Геномными называют мутации, приводящие к изменению числа хромосом. Наиболее распространенным типом геномных мутаций является полиплоидия - кратное изменение числа хромосом. Изменчивость может быть обусловлена не только мутациями генов, но и различной их комбинацией. Комбинация генов при наличии взаимодействия между ними может привести к появлению новых признаков или к новому их сочетанию. Такую изменчивость называют комбинативной, и возникает она в результате скрещивания. В процессе индивидуального развития наблюдаются закономерные изменения морфологических, физиологических, биохимических и других особенностей организма. Время и порядок появления этих изменений в онтогенезе строго определяются генотипом. Такую изменчивость называют возрастной или онтогенетической. Примеры онтогенетической изменчивости можно привести из личного опыта, вспомнив, как закономерно и постепенно происходит физическое и умственное развитие человека. Онтогенетическая изменчивость отличается от генотипической тем, что организмы, несмотря на их возрастные различия, сохраняют одинаковый генотип. Такую изменчивость относят к фенотипической, или ненаследственной, изменчивости. Для того чтобы признак развился, или, как принято говорить, генотип реализовался в фенотипе, необходимы соответствующие условия внешней среды. Разнообразие в проявлении одинаковых генотипов в различных условиях среды называют модификационной изменчивостью. Она, так же как и онтогенетическая, относится к группе фенотипической, или ненаследственной, изменчивости. Примеры модификаций многочисленны: у морского червя Bonellia viridis, у которого самка и самец имеют одинаковый генотип, развитие пола зависит только от условий существования.
2. Основные этапы развития генетики. Роль отечественных ученых в развитии генетики и селекции (Н.И. Вавилов, А.С. Серебровский Н.К. Кольцов, Ю.А. Филипченко, С.С. Четвериков и др.). Значение генетики для решения задач селекции, медицины, биотехнологии,экологии.
Генетика — наука, изучающая закономерности и материальные основы наследственности и изменчивости организмов, а также механизмы эволюции живого. Основные закономерности передачи наследственных признаков были установлены на растительных и животных организмах, они оказались приложимы и к человеку. В своем развитии генетика прошла ряд этапов. Первый этап ознаменовался открытием Г. Менделем (1865) дискретности (делимости) наследственных факторов и разработкой гибридологического метода, изучения наследственности, т. е. правил скрещивания организмов и учета признаков у их потомства. Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга. Законы Г. Менделя были вновь переоткрыты в 1900 г. тремя биологами независимо друг от друга: де Фризом, К. Корренсом и Э. Чермаком. Результаты гибридизации на различных растениях и животных, полностью подтвердили менделевские законы наследования признаков и показали их универсальный характер по отношению ко всем организмам, размножающимся половым путем. Менделевские законы наследственности заложили основу теории гена — величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901 —1903 гг. де Фриз выдвинул мутационную теорию изменчивости. В. Иоганнсен изучал закономерности наследования на чистых линиях фасоли, сформулировал понятие “популяции (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские “наследственные факторы” словом ген, дал определения понятий “генотип” и “фенотип”. Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (питоге-нетика). Т. Бовери (1902—1907), У. Сэттон и Э. Вильсон (1902—1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз). Развитие учения о клетке привело к уточнению строения, формы и количества хромосом и помогло установить, что гены, контролирующие те или иные признаки, не что иное, как участки хромосом. Это послужило важной предпосылкой утверждения хромосомной теории наследственности. В ее обосновании проведены исследования на мушках дрозофилах Т. Г. Морганом и его сотрудниками (1910—1911), установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Число групп сцепления генов соответствует числу пар гомологичных хромосом, и гены одной группы сцепления могут перекомбинироваться в процессе мейоза благодаря явлению кроссинговера, что лежит в основе одной из форм наследственной комбинативной изменчивости организмов. Морган установил закономерности наследования признаков, сцепленных с полом. Третий этап в развитии генетики отражает достижения молекулярной биологии и связан с использованием методов и принципов точных наук — физики, химии, математики, биофизики и др.—в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория “один ген — один фермент” (Дж. Бидл и Э. Татум, 1940). В 1953 г. Ф. Крик и Дж. Уотсон создали структурную модель ДНК в форме двойной спирали. В последующее десятилетие уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов. В последнее десятилетие возникло новое направление в молекулярной генетике — генная инженерия — система приемов, позволяющих биологу конструировать искусственные генетические системы. Современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека. Советские ученые: Вавилов Николай Иванович (1887–1943) –автор современной теории селекции; разработал учение о центрах происхождения культурных растений; сформулировал закон гомологических рядов (закон, согласно которому целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.); разработал учение о виде как системе. Дубинин Николай Петрович (р. 1907) – один из основателей отечественной генетики; доказал делимость гена; независимо от западных исследователей установил, что важную роль в эволюции играют вероятностные, генетико-автоматические процессы. Кольцов Николай Константинович (1872–1940) – предсказал свойства носителей генетической информации; разрабатывал теорию гена; разрабатывал учение о социальной генетике (евгенике). Серебровский Александр Сергеевич (1892–1948) –Разработал линейную теорию гена, создал учение о генофонде и геногеографии, показал существование в малых изолированных популяциях стохастических процессов, играющих ключевую роль в селективно-нейтральной эволюции. В основе методов индивидуального отбора у растений лежат генетические представления о чистых линиях, о гомо- и гетерозиготности и о нетождественности фенотипа и генотипа. Генетические закономерности независимого наследования и свободного комбинирования признаков в потомстве послужили теоретической основой гибридизации и скрещивания, которые наряду с отбором входят в число основных методов селекции. Важнейшее значение для повышения эффективности селекции растений имеют закон гомологических рядов Н. И. Вавилова, его учение о генцентрах происхождения культурных растений, а также его теории отдалённых эколого-географических скрещиваний и иммунитета. Большую роль играет генетика в изучении наследственности человека, в предупреждении и лечении наследственных болезней. Она внесла большой вклад в познание диалектико-материалистической картины мира, показав, что коренное свойство жизни — наследственность — основывается на сложной физико-химической структуре хромосомного аппарата, сформировавшегося в ходе эволюции для хранения и передачи генетической информации.