- •Классическое определение вероятности.
- •2 Основные правила и формулы комбинаторики: перестановки, размещения, сочетания.
- •Выборки элементов с повторениями
- •3 Случайные события и алгебра событий. Непосредственное вычисление вероятностей
- •4 Основные теоремы теории вероятностей.
- •Случайные величины (дискретные и непрерывные). Закон распределения дискретной случайной величины.
- •Пространство элементарных событий
- •Алгебра событий
- •Вероятность
- •Определение случайной величины
- •Классификация
- •Методы описания
- •Функция распределения вероятностей случайной величины. Плотность распределения.
- •Законы равномерного и нормального распределений
- •Свойства
- •Моделирование нормальных случайных величин
- •Центральная предельная теорема
- •I b Законы равномерного распределений
- •II b Равномерный закон распределения.
- •Вероятность попадания в заданный интервал нормальной случайной величины
- •Числовые характеристики случайных величин.
- •10 Схема повторных испытаний. Формула Бернулли. Предельные теоремы в схеме Бернулли (Пуассона, Муавра-Лапласа).
- •Предмет и основные задачи математической статистики.
- •Классификация статистической информации.
- •Классификация статистических методов
- •Понятия “генеральная совокупность”, “выборочная совокупность” и “репрезентативная совокупность ”. Способы выбора из генеральной совокупности.
- •Статистическое распределение выборки. Эмпирическая функция распределения. Графическое изображение статистического распределения.
- •Числовые характеристики распределений: мода, медиана, среднее.
- •Числовые характеристики распределений: генеральная средняя и дисперсия; выборочная средняя и дисперсия.
- •1.2.Выборочная средняя.
- •1.3. Генеральная дисперсия.
- •1.4.Выборочная дисперсия.
- •Функциональная, статистическая и корреляционная зависимости. Выборочное уравнение регрессии. Отыскание параметров выборочного уравнения прямой линии среднеквадратичной регрессии.
- •Элементы теории корреляции. Коэффициент корреляции Пирсона.
- •9 Элементы теории корреляции. Коэффициент ранговой корреляции Спирмена.
- •В каких случаях можно обойтись без ранжирования
- •10 Точечные оценки параметров распределенияи методы их нахождения. Метод моментов.
- •4.1. Точечная оценка параметров распределения
- •Преимущества и недостатки метода
- •11 Точечные оценки параметров распределения и методы их нахождения. Понятие о методе наименьших квадратов. Метод наименьших квадратов (расчёт коэффициентов)
- •Интервальные оценки. Построение доверительного интервала для оценки математического ожидания при известной дисперсии.
Элементы теории корреляции. Коэффициент корреляции Пирсона.
Корреля́ция (корреляционная
зависимость) —
статистическая
взаимосвязь двух или нескольких случайных
величин (либо
величин, которые можно с некоторой
допустимой степенью точности считать
таковыми). При этом изменения значений
одной или нескольких из этих величин
сопутствуют систематическому изменению
значений другой или других величин.[1]
Математической мерой корреляции двух
случайных величин служит корреляционное
отношение
,
либо коэффициент
корреляции
(или
).
В случае, если изменение одной случайной
величины не ведёт к закономерному
изменению другой случайной величины,
но приводит к изменению другой
статистической характеристики данной
случайной величины, то подобная связь
не считается корреляционной, хотя и
является статистической.
Впервые в научный оборот термин «корреляция» ввёл французский палеонтолог Жорж Кювье в XVIII веке. Он разработал «закон корреляции» частей и органов живых существ, с помощью которого можно восстановить облик ископаемого животного, имея в распоряжении лишь часть его останков. В статистике слово «корреляция» первым стал использовать английский биолог и статистик Фрэнсис Гальтон в конце XIX века.
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Пусть
даны две выборки
коэффициент
корреляции Пирсона рассчитывается по
формуле:
где
–
выборочные средние
и
,
–
выборочные дисперсии,
.
Коэффициент корреляции Пирсона называют также теснотой линейной связи:
