
- •1) Предмет изучения, цели и задачи курса.
- •2) Основы концепции эффективного конструирования эс.
- •3)Факторы, вызывающие реакцию эс. И 4) Классификация факторов и общая характеристика.
- •7) Общая характеристика механических воздействий.
- •8) Механический резонанс при вибрационных нагрузках.
- •9) Ускорения, ударные нагрузки, акустические воздействия и их характеристики.
- •10) Климатические факторы и их воздействие на эс. И 11) Климатические зоны и их характеристики.
- •4.2. Отражение в тз факторов окружающей среды.
- •12) Воздействия на эс температуры, влажности, давления, биологических и агрессивных сред.
- •13) Радиационные воздействия и их характеристики.
- •14) Специфика элементной базы и современные тенденции в конструировании эс.
- •15) Классификация эс по объектам установки.
- •16) Общие конструктивные и технологические требования к эс.
- •17) Частные требования к конструкциям эс.
- •18) Уровни разукрупнения конструкций эс.
- •19) Общие принципы, цели и задачи конструирования эс.
- •20) Роль формализованных и творческих действий при проектировании.
- •21) Стадии разработки эс.
- •22) Жизненный цикл изделия.
- •23) Техническое предложение.
- •1.Общие положения
- •2. Требования к выполнению документов
- •2.1. Общие требования к выполнению документов
- •2.2. Чертеж общего вида
- •2.3. Ведомость технического предложения
- •2.4. Пояснительная записка
- •24) Эскизный проект.
- •1.Общие положения
- •2. Требования к выполнению документов
- •25) Технический проект.
- •26) Рабочее проектирование. Рабочее проектирование
- •27) Ескд – виды и комплектность кд.
- •28) Правила выполнения кд. Пример по курсовому проекту.
- •29) Использование вт при разработке кд.
- •30) Факторы взаимодействия в системе «человек-машина».
- •31) Общие эргономические требования в системе «человек-машина».
- •32)Основные эргономические характеристики человека-оператора.
- •33) Формирование и приём сигналов управления в системе «человек-машина».
- •34) Задача определения предварительного определения варианта конструкции – задача компоновки.
- •35) Принципы и схемы пространственной компоновки эс.
- •36) Компоновка модулей различных уровней.
- •6.4.2. Бескорпусные мкс и мсб.
- •6.5. Унифицированные конструкции модулей второго уровня.
- •37) Несущие конструкции различных уровней эс.
- •38) Базовые несущие конструкции (бнк).
- •48) Провода, используемые для внутриблочного и стоечного монтажа.
- •49) Волоконно-оптические системы межсоединений в эс.
- •50) Методы защиты эс от воздействий окружающей среды.
- •51) Классификация методов защиты от окружающей среды.
- •52) Герметизация – виды и их характеристики.
- •53) Полная, частичная и комбинированная герметизация.
- •54) Конструкция уплотнительных стыков при герметизации.
- •57) Понятии вибро- и удароустойчивости эс.
- •58) Принципы и способы повышения защищённости эс от механических воздействий
- •59) Конструктивная реализация защищённости эс от механических воздействий.
- •Защита с амортизатором
- •Защита без ам
- •60) Расчёт собственной частоты механического резонанса простейших конструкций.
- •61) Амортизация эс
- •62) Принципы и способы защиты эс от тепловых нагрузок.
- •63) Физические явления отвода тепла от конструкции в эс.
- •Теплопроводность от твердого тела к твердому (кондукция)
- •Теплоотвод от твердого тела к газообразному или жидкому (конвекция)
- •3) Лучеиспускание (закон Стефана-Больцмана)
- •Фазовый переход
- •64) Конструктивная реализация обеспечения нормального теплового режима в эс.
- •65) Математические методы анализа теплового режима эс.
- •66) Методика предварительного выбора метода отвода тепла в эс.
- •67) Понятие электромагнитной совместимости.
- •68) Причины возникновения помех и их квалификация.
- •69) Характеристика электромагнитной обстановки функционирования эс.
- •70) Помехи в эс при «длинных» и «коротких» линиях связи.
- •71) Принципы и способы обеспечения помехоустойчивости в эс.
- •72) Конструктивная реализация обеспечения помехоустойчивости в эс.
- •9.3.1. Экранирование при конструировании рэс.
- •9.3.1.1. Основные характеристики экранов.
- •73) Наводки по цепям питания и методы их уменьшения.
- •74) Использование экранов для защиты от электромагнитных помех.
- •А. Электростатическое экранирование
- •9.3.1.3. Особенности конструирования электромагнитных экранов
74) Использование экранов для защиты от электромагнитных помех.
9.3.1.2. Виды экранов.
В общем случае экранирование осуществляется с помощью электромагнитных экранов. Однако часто наблюдается преобладание отдельных видов полей, поэтому для учета их специфики различают следующие виды экранирования: электростатическое, магнитостатическое и электромагнитное.
На низких частотах применяют электро- и магнитостатическое экранирование, а на высоких – одновременно с экранированием магнитного поля происходит экранирование электрического поля, что определяет единый процесс электромагнитного экранирования.
А. Электростатическое экранирование
Если в электростатическое поле внести проводник, то в результате поляризации электроны в нем начнут перемещаться в сторону положительно заряженной пластины и на поверхности проводника, обращенной к этой пластине, возникает отрицательный потенциал, а на противоположной – положительный. Положительная и отрицательная части проводника создают собственное вторичное поле, которое равно внешнему и имеет противоположное ему направление. Следовательно, внешнее поле и поле, созданное проводником, компенсирует друг друга внутри тела и на поверхности проводника. Этим объясняется распределение зарядов только на поверхности проводника. Внутри проводника поле отсутствует. Этим явлением электростатической индукции и пользуются для электростатического экранирования. В самом деле, если внутри металлического тела поле равно нулю, то достаточно поместить в него защищаемое устройство, чтобы защитить его от влияния электростатического поля.
Рис. 9.3. Электростатический экран.
Электростатический экран является элементом, реализующим принцип P1''' компенсации в определенном пространстве порождающего поля порожденным.
Если теперь подключить металлическую оболочку к земле (к корпусу), то заряды с внешней поверхности оболочки стекут на корпус, т. к. он обладает большой емкостью, и вне оболочки поле окажется равным нулю. Таким образом электростатическое экранирование заключается в замыкании электростатического поля на поверхность металлического экрана и отводу электростатических зарядов в землю (на корпус). Заземление является необходимым элементом электростатического экранирования. Экраны изготавливают из материалов с высокой проводимостью, имеющие или замкнутый объем, или в виде металлической перегородки, соединенные с корпусом. Применение сеточных материалов не обеспечивает полного экранирования.
А. Компоновка объекта и экрана
Для установления конкретных реализаций структуры (схемы) объединение экрана и защищаемого объекта исходят обычно из особенностей объекта, т.е. форма и размеры (унарное отношение R1=1, E1) экрана и взаимное положение экрана и объекта (n-арное отношение Rn=n, En), определяется условиями защиты и характеристиками объекта.
Б. Магнитостатическое экранирование.
Магнитостатическое экранирование основано на отражении и компенсации ( диамагнитный материал экрана) рис.9.4
Рис.9.4. Диамагнитный экран
или поглощении (ферромагнитный материал) магнитного поля в толще экрана рис.9.5.
Рис.9.5. Магнитооптический поглощающий экран
Такие экраны используют для защиты от постоянного или медленно изменяющегося переменного магнитного поля. Качество экранирования тем выше, чем больше величина магнитной проницаемости материала и чем меньше в экране стыков и швов, идущих поперек направления магнитных силовых линий. Чем больше величина магнитной проницаемости материала экрана, тем тоньше его можно делать. Для повышения эффективности экранирования в ряде случаев применяют экраны, составленные из нескольких слоев, но более тонкого материала. Требуемая эффективность экранирования может быть получена уже у двух или трехслойного экрана.
В. Электромагнитное экранирование
Заключается и том, что переменное высокочастотное электромагнитное поле, проходя через металлический лист перпендикулярно, или под некоторым углом к его плоскости, наводит в этом листе вихревые токи, поле которых ослабляет действие внешнего поля. В данном случае металлический лист является электромагнитным экраном.
С точки зрения волновых представлений эффект экранирования проявляется из-за многократного отражения электромагнитных волн в его толще. Глубина проникновения представляет собой постоянную величину, характеризующую материал экрана и зависящую от частоты:
S = 0,52 /гf ,
где - удельное сопротивление материала экрана, Омм;
г – относительная магнитная проницаемость материала;
f – частота, МГц.
Многообразие и случайный характер факторов, определяющих эффективность экранирования, существенно затрудняет инженерные расчеты. Поэтому прибегают к обобщению экспериментальных данных и построению на этой основе формул для расчета эффективности экранирования в широком диапазоне частот.