
- •1 Билет
- •2 Билет Определители n-го порядка.
- •3 Билет
- •Алгоритм нахождения обратной матрицы
- •Решение матричных уравнений
- •4 Билет
- •4.1. Основные понятия
- •Решение системы по формулам Крамера
- •5 Билет
- •Достоинства метода
- •6 Билет
- •Определение
- •7 Билет Вектором называется величина, характеризующаяся не только численным значением, но и направлением в пространстве.
- •Базис системы векторов
- •Алгоритм нахождения базиса системы векторов
- •8 Билет Деление отрезка в данном отношении
- •9 Билет
- •Геометрические свойства векторного произведения
- •10 Билет
- •Прямая на плоскости
- •11 Билет
- •12 Билет
- •13 Билет
- •14 Билет
- •15 Билет
- •Бесконечно малая величина
- •]Пример
- •16 Билет
- •Сравнение бесконечно малых
- •17 Билет
- •Свойства функций, непрерывных на отрезке
- •18 Билет
- •1.3 Общее правило нахождения производной
- •1.4 Геометрический смысл производной
- •1.5 Механический смысл производной
- •Правила дифференцирования
]Пример
«Замечательный предел»
— пример неопределённости вида 0 / 0. По правилу Лопиталя
16 Билет
Замеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:
Первый замечательный предел:
Второй замечательный предел:
Первый замечательный предел
Рассмотрим
следующий предел:
Согласно
нашему правилу нахождения пределов
пробуем подставить ноль в функцию: в
числителе у нас получается ноль (синус
нуля равен нулю), в знаменателе, очевидно,
тоже ноль. Таким образом, мы сталкиваемся
с неопределенностью вида
,
которую, к счастью, раскрывать не нужно.
В курсе математического анализа,
доказывается, что:
Данный математический факт носит название Первого замечательного предела.
Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:
–
тот
же самый первый замечательный предел.
Второй замечательный предел
При
решении примеров полезно иметь в виду
следующие равенства:
Найти
предел
Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.
Но
сначала, как всегда, пробуем подставить
бесконечно большое число в выражение
,
по какому принципу это делается, разобрано
на уроке
Пределы.
Примеры решений.
Нетрудно заметить, что при
основание
степени
,
а показатель –
,
то есть имеется, неопределенность
вида
:
Данная
неопределенность как раз и раскрывается
с помощью второго замечательного
предела. Рассуждать можно следующим
образом: в данном примере параметр
,
значит, в показателе нам тоже нужно
организовать
.
Для этого возводим основание в степень
,
и, чтобы выражение не изменилось –
возводим в степень
:
Практически
всё готово, страшная степень превратилась
в симпатичную букву
:
При
этом сам значок предела перемещаем в
показатель.
Сравнение бесконечно малых
Отношение бесконечно малых величин образует так называемую неопределённость
Допустим,
у нас есть бесконечно малые при одном
и том же
величины α(x) и β(x) (либо,
что не важно для определения, бесконечно
малые последовательности).
Если
, то β — бесконечно малая высшего порядка малости, чем α. Обозначают β = o(α).
Если
, то β — бесконечно малая низшего порядка малости, чем α. Соответственно α = o(β).
Если
(предел конечен и не равен 0), то α и β являются бесконечно малыми величинами одного порядка малости.
Это обозначается как β = O(α) или α = O(β) (в силу симметричности данного отношения).
Если
(предел конечен и не равен 0), то бесконечно малая величина β имеет m-й порядок малости относительно бесконечно малой α.
Для вычисления подобных пределов удобно использовать правило Лопиталя.
17 Билет
Непрерывность функции в точке.
Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.
Тот
же факт можно записать иначе:
Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.
Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа >0 существует такое число >0, что для любых х, удовлетворяющих условию
верно
неравенство
.
Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.
f(x) = f(x0) + (x)
где (х) – бесконечно малая при хх0.
Точки разрыва и их классификация.
Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.
Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.
Если
односторонний предел (см. выше)
,
то функция называется непрерывной
справа.
|
|
|
|
х0
Если
односторонний предел (см. выше)
,
то функция называется непрерывной
слева.
|
|
|
|
х0
Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.
Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.
Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.
Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.
Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.
Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г)
не является непрерывной в любой точке х0.