
- •Разработка нефтяных месторождений
- •1. Особенности современного этапа развития нефтяной промышленности
- •2. Фундаментальные проблемы разработки нефтяных месторождений
- •3. Общие сведения о пластовых жидкостях и о силах, вызывающих движение нефти по пласту
- •3.1.Основные свойства нефти и газа
- •3.2.Нефтяные газы и их свойства
- •3.3.Пластовые воды
- •3.4.Коллекторские свойства горных пород
- •3.5.Понятие о давлении
- •4. Общая характеристика параметров месторождения
- •4.1.Горно-геологические параметры
- •4.2.Экономико-географические параметры
- •4.3.Социально-экономические параметры
- •5.Категории скважин
- •6.Промышленная разработка нефтяных месторождений
- •6.1.Ввод нефтяных месторождений (залежей) в промышленную разработку
- •6.2.Системы разработки нефтяных месторождений (залежей)
- •6.3.Технологические проектные документы
- •6.4.Понятие эксплуатационного объекта
- •6.5.Контроль за охватом эксплуатационного объекта процессом вытеснения
- •Коэффициент охвата вытеснением и его определение
- •7.Схематизация условий разработки
- •7.1.Схематизация формы залижи
- •7.2.Схематизация контура нефтеносности
- •7.3.Схематизация контура питания
- •7.4.Схема размещения скважин
- •8.Режимы нефтегазоносных пластов
- •9.Понятие о неоднородности коллекторов
- •9.1.Методы изучения геологической неоднородности
- •9.1.1. Геолого-геофизические методы
- •9.1.2. Лабораторно‑экспериментальные методы
- •9.1.3. Промыслово‑гидродинамические методы
- •9.1.4. Применение вероятностно‑статистических методов для обработки геолого‑промысловых данных.
- •9.2.Показатели геологической неоднородности пластов
- •9.3.Виды неоднородности
- •10.Регулирование процесса разработки
- •10.1.Виды заводнения
- •11.Техника и технология применения систем ппд путем заводнения
- •11.1.Свойства и качество нагнетаемой в пласт воды
- •11.2.Подготовка вод наземных источников
- •11.3.Подготовка сточных пластовых вод
- •Отстойник с патронными фильтрами опф-3000
- •11.4.Автоматизация и контроль
- •11.6.Очистка сточных пластовых вод на установках подготовки нефти
- •Оборудование для закачки воды
- •Водораспределительные пункты
- •Нагнетательные трубопроводы
- •Оборудование нагнетательных скважин
- •13.Методы контроля за ппд
- •14.Требования к системе ппд
- •15.Инфраструктура (обустройство) месторождения
- •15.1.Горно-геологические параметры.
- •15.2.Экономико-географические параметры.
- •15.3.Социально-экономические параметры.
- •16.Технология и организация обустройства месторождений западной сибири
- •16.1.Состав нефтегазопромысловых объектов
- •16.2.Технология и организация обустройства месторождений
- •17.Проектирование разработки нефтяных месторождений
- •18.Составление проектных документов
7.3.Схематизация контура питания
За контур питания в условиях водонапорного режима принимается линия, соответствующая выходам пласта, откуда он пополняется поверхностными водами (см. рис. 3), или линия, на которой расположены нагнетательные скважины.
На естественном или искусственном контуре питания приведенное давление в процессе разработке остается постоянным. В следствии быстрого перераспределения давления в газовой шапке в условиях газонапорного режима за контур питания может быть принят газонефтяной контакт. При питании залежи со всех сторон контур питания с большой степенью точности можно принять круговым, при питании залежи с одной стороны или с двух противоположных сторон - прямолинейным.
Дебит рядов эксплуатационных скважин в процессе разработки будет изменятся даже при сохранении постоянного перепада давлений между контурами питания и скважинами, что является следствием изменения общего сопротивления потоку движущейся жидкости. Дебит скважины в каждый момент времени зависит от текущего положения водо-нефтяного или газо-нефтяного контакта, от соотношения вязкостей вытесняемого и вытесняющего агентов и от изменения проницаемости пласта в зоне замещения нефти вытесняющим агентом.
Если сопротивление в нефтяной зоне больше сопротивления в зоне вытесняющего агента (воды или газа), то при сохранении постоянного перепада давлений дебит увеличивается, так как область, заполненная нефтью, сокращается и общие гидравлические сопротивления потоку уменьшаются. Если сопротивление потоку в нефтяной зоне меньше сопротивления в зоне вытесняющего агента, то дебит вследствие тех же причин будет уменьшаться.
Для определения эффективности рассмотренных вариантов разработки интересно оценить средние дебиты на различных этапах разработки. За этап разработки принимается промежуток времени, в течении которого контур перемещается с начального положения до первого ряда скважин или от ряда обводнившихся выключенных скважин до следующего ряда работающих скважин. Для определения среднего дебита вводится расчетный приведенный контур питания. Определение местоположения приведенного контура питания рассмотрим на примере полосообразной залежи, работающей в условиях водонапорного режима и имеющей односторонний контур питания (рис. 2,а).
Суммарный дебит рядов Q ( в м3 / сек) для любого момента времени можно определить по формуле :
Q
=
,
(2)
В - длина рядов перпендикулярно к потоку движущейся жидкости, (м)
h- мощность пласта, (м)
k - проницаемость, (м2)
pк - давление на контуре области питания, (н/м2)
p - среднее давление на линии внешнего ряда во время работы, (н/м2)
в и н - вязкость воды и нефти, (н. cек/м2)
Lк - расстояние от внешнего ряда до контура питания, (м)
Lн - расстояние от внешнего ряда до начального положения контура нефтеносности, (м)
L - расстояние от внешнего ряда до текущего водо-нефтяного контакта, (м)
Как видно из формулы (2), дебит изменяется в зависимости от положения контура нефтеносности. Начальный дебит можно определить из формулы (2), если вместо L подставить Lн , а к моменту подхода контура нефтеносности к внешнему ряду дебит можно подсчитать по той же формуле (2), приняв L=0.
Истинная скорость перемещения контура нефтеносности w - величина переменная. Значение ее можно определить из уравнения движения жидкости в поровом пространстве
w
= -
(3)
Пдин - коэффициент динамической полезной емкости коллектора.
Разделив в уравнении (3) переменные, проинтегрируем его, подставив предварительно значение дебита из формулы (2)
(4)
Начальному моменту времени соответствует положение контура нефтеносности на расстоянии L н от внешнего ряда, а окончание процесса обводнения (t) соответствует подходу к внешнему ряду контура нефтеносности. После интегрирования получим
(5)
Как же определить средний суммарный дебит скважин рядов за время t ? Дебит может быть постоянным только при условии, что вязкость нефти и воды одинакова, и при постоянной проницаемости пласта. Предположим, что вязкость всей жидкости ровна вязкости нефти н и проницаемость пласта k постоянна. Подсчитаем средний дебит Q , условно приняв, что контур питания с тем же давлением pк находится на расстоянии L0 от внешнего ряда:
=
(6)
Продолжительность перемещения контура нефтеносности от начального положения Lн до ряда можно определить объемным методом, так как скорость остается постоянной и не зависит от изменения гидравлических сопротивлений в процессе разработки:
(7)
В реальных условиях при переменном дебите с учетом различия гидравлических сопротивлений и при среднем постоянном дебите без учета этого различия продолжительность этапов разработке должна быть одинаковой. Поэтому значения времени t, определенные по формулам (5 ) и (7), должны совпадать. Приравняв правые части уравнений (5) и (7), определим L0 , величина которого соответствует расстоянию от внешнего ряда до приведенного контура питания:
(8)
Таким образом, приведенным контурам питания называется расчетный контур , по которому можно определить средний дебит рядов скважин и среднюю скорость перемещения контура нефтеносности на каждом этапе разработки в предположении, что вязкости нефти и воды (газа) одинаковы и проницаемость пласта постоянна. При этом для продолжительности этапов разработки получим те же значения, что и в реальных условиях. При расчетах давление на приведенном контуре питания условно принимают равным давлению на истинном контуре питания.
Рассуждая аналогично, можно найти выражение для приведенного контура питания круговой залежи, работающей водонапорном режиме (см. Рис. 2 в). С учетом геометрии пласта радиус с приведенного контура питания можно определить из выражения:
,
(9)
где R0 - радиус приведенного контура питания;
Rн - радиус начального контура нефтеносности;
R1 - радиус первого эксплуатационного ряда;
Rк - радиус контура области питания (естественного или искусственного, созданного нагнетательными скважинами).
В случае газонапорного режима формулы для приведенного контура питания будут иметь такой же вид, как и в случае водонапорного, только вместо вязкости воды в как вытесняющего агента следует подставлять вязкость газа г . Кроме того, для газонапорного режима формулы (8) и (9) можно значительно упростить. Так как г н , с высокой степенью точности можно принять г / н = 0. Приведенные контуры питания для полосообразной и круговой залежей при газонапорном режиме показаны на рис. 2 б, г.
Следует отметить, что при газонапорном режиме давление в газовой шапке, являющейся областью питания, может изменяться. Если газ не закачивают, оно снижается, если газ закачивают под давлением, превышающим первоначальное, - повышается. Тогда приведенный контур питания следует несколько раз изменять в течении каждого этапа разработки в соответствии с изменением давления в газовой шапке.
Расстояние до приведенного контура питания следует определять для каждого этапа разработки после выключения ряда скважин вследствие обводнения или загазовывания их. Так, для второго этапа разработки в полосообразной залежи расстояние до приведенного контура питания также можно определить по формуле (8) , подразумевая под Lк расстояние от второго ряда до контура питания , а под Lн - расстояние между вторым и первым рядами, на котором к началу второго этапа находится контур нефтеносности. Для определения R0 на втором этапе разработки в круговой залежи в формулу (9) вместо Rн следует подставить R1 , а вместо R1- радиус второго эксплуатационного ряда.