
- •Предмет и основные понятия химической кинетики (система; фаза; процессы и их классификация; скорость и факторы, влияющие на скорость гомогенных и гетерогенных реакций).
- •Зависимость скорости химических реакций от концентраций (парциальных давлений) реагирующих веществ. Закон действия масс, константа скорости.
- •3. Влияние температуры на скорость химических реакций: правило Вант-Гоффа, уравнение Аррениуса.
- •Энергия активации, энергетические диаграммы реакций. Влияние катализаторов на скорость реакций.
- •5. Химическое равновесие: кинетическое условие равновесия, факторы, влияющие на его состояние. Смещение равновесия (принцип Ле Шателье).
- •6. Константа химического равновесия (вывод; Кс, Кр, их взаимосвязь).
- •7. Зависимость констант скорости и химического равновесия от температуры. Уравнение изобары химической реакции.
- •8. Предмет, задачи, основные понятия и определения химической термодинамики (системы, параметры, функции).
- •9. Первый закон термодинамики; внутренняя энергия, энтальпия.
- •10. Применение первого закона термодинамики к изохорным и изобарным процессам. Тепловые эффекты химических реакций. Стандартные энтальпии образования веществ.
- •11. Законы термохимии (Гесса, Лавуазье–Лапласа). Расчет энергетических эффектов физико-химических процессов. Уравнение Кирхгофа.
- •12. Второй закон термодинамики. Энтропия (физический смысл; факторы, влияющие на величину энтропии). Изменение энтропии в различных физико-химических процессах.
- •13. Объединенное уравнение первого и второго законов термодинамики. Энергия Гиббса и энергия Гельмгольца.
- •14. Термодинамические критерии (энтальпийный и энтропийный факторы) возможности и направленности физико-химических процессов.
- •15. Термодинамическое условие состояние равновесия. Взаимосвязь свободной энергии Гиббса и константы равновесия. Уравнения изотермы и изобары химической реакции.
- •17. Растворы электролитов. Теория электролитической диссоциации. Кислоты, основания, соли в свете теории электролитической диссоциации.
- •18. Количественные характеристики растворов электролитов: степень и константа диссоциации; классификация электролитов. Степень диссоциации. Сильные и слабые электролиты
- •19. Сильные электролиты: активность ионов, коэффициент активности. Определение концентрации и активности ионов в растворах сильных электролитов.
- •20. Слабые электролиты: смещение равновесия в растворах слабых электролитов; степень и константа диссоциации, закон разбавления Оствальда.
- •21. Ионное произведение воды. Водородный (рН) и гидроксильный (рОн) показатели; их роль в различных физико–химических процессах.
- •22. Реакции обмена и гидролиза в растворах электролитов (ионно-молекулярные уравнения); степень и константа гидролиза.
- •23. Определение рН среды при гидролизе солей: по катиону, по аниону, по катиону и аниону.
- •24. Окислительно-восстановительные реакции: степень окисления; основные окислители и восстановители; способы составления уравнений овр (метод электродного баланса, электронно-ионный метод).
- •25. Электрохимические процессы и системы. Электродный потенциал и механизм его возникновения (двойной электрический слой). Условие протекания электрохимических окислительно-восстановительных реакций.
- •26. Электрод сравнения – водородный электрод. Определение величин стандартных электродных потенциалов. Электрохимический ряд напряжений.
- •27. Электроды 1-го рода (металлические и газовые). Расчет равновесных электродных потенциалов, уравнение Нернста.
- •28. Гальванические элементы: принцип действия, виды, основные характеристики (эдс, а мах, Кр , ∆g).
- •29. Химические и концентрационные гальванические элементы (схемы, уравнения электродных реакций, характеристики).
- •30. Явление поляризации и способы деполяризации в гальванических элементах.
- •31. Элемент Вольта (принцип действия, уравнения электродных реакций, эдс).
- •32. Общие закономерности процессов электролиза; факторы, определяющие характер и скорость электродных реакций.
- •33. Электролиз растворов и расплавов электролитов на инертных и активных электродах.
- •34. Поляризация и перенапряжение при электролизе. Эдс разложения.
- •35. Количественные законы электролиза – законы Фарадея (первый, второй, объединенный). Выход по току.
- •36. Химические источники тока: первичные, периодического действия (аккумуляторы), топливные элементы.
- •37. Применение процессов электролиза в технике (электрометаллургия, гальванотехника, оксидирование, электрорафинирование, хемотроника и др.).
- •38. Коррозия металлов: химическая и электрохимическая (общая характеристика, механизм протекания).
- •39. Электрохимическая коррозия металлов (причины и условия возникновения, механизм).
- •40. Коррозия с водородной и кислородной деполяризацией (условия протекания, способы замедления).
- •41. Электрохимическое и термодинамическое условия протекания коррозии, влияние вторичных продуктов коррозии на ее скорость.
- •42. Химические и электрохимические методы защиты металлов от коррозии (легирование, покрытия, протекторная и катодная защита).
- •43. Основные положения квантовой теории строения атома. Квантовые числа.
- •44. Электронные конфигурации атомов. Принцип Паули, правило Гунда. Принцип Паули: в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы.
- •45. Структура многоэлектронных атомов. Принцип наименьшей энергии, правила Клечковского.
- •46. Общие положения теории химической связи (природа, условия образования, параметры). Ковалентная связь: способы образования, свойства.
- •47. Виды химической связи (ионная, металлическая, водородная) и их основные характеристики.
- •48. Металлы и их общая характеристика: химическая связь и структура, физические свойства, способы получения металлов.
- •49. Общие химические свойства металлов: взаимодействие с элементарными и сложными окислителями.
- •50. Элементарные полупроводники (положение в периодической системе элементов, общая характеристика); кремний и германий (нахождение в природе, способы получения, физические и химические свойства).
21. Ионное произведение воды. Водородный (рН) и гидроксильный (рОн) показатели; их роль в различных физико–химических процессах.
Вода является слабым электролитом, поэтому в любом водном растворе существует равновесие
,
которое количественно характеризуется константой диссоциации:
=1,86·10–16
при 298 К.
Численное значение
определено экспериментально по данным
электропроводности воды. Равновесная
концентрация недиссоциированных молекул
воды
практически равна ее молярной концентрации,
которая для воды объемом 1 л составляет
моль/л
(1000/18) и является постоянной величиной.
Произведение двух постоянных КД
и
дает новую постоянную, называемую ионным
произведением воды
:
|
|
Величина ионного
произведения воды (
)
остается постоянной при неизменной
температуре (298 К) не только в чистой
воде, но и в любом водном растворе
электролита (кислоты, основания, соли).
Тогда
|
|
В чистой воде
моль/л.
Для практической оценки характера среды в водных растворах используется водородный показатель рН.
Водородный показатель (рН) – отрицательный десятичный логарифм молярной концентрации ионов водорода в растворе
|
Гидроксильный показатель (рОН) – отрицательный десятичный логарифм молярной концентрации гидроксид-ионов в растворе
|
|
||
Тогда при 298 К |
|
|
Таблица 2.1
Значение рН и рОН в различных средах при стандартных условиях
Среда |
|
|
рН |
рОН |
Кислая |
> 1 · 10–7 до 1 |
< 1 · 10–7 |
< 7 |
> 7 |
Нейтральная |
1 · 10–7 |
1 · 10–7 |
7 |
7 |
Щелочная |
< 1 · 10–7 |
>1 · 10–7 |
> 7 |
< 7 |
22. Реакции обмена и гидролиза в растворах электролитов (ионно-молекулярные уравнения); степень и константа гидролиза.
В растворах электролитов реагирующими частицами являются ионы. Реакции обмена в растворах электролитов протекают до конца (практически необратимо) в направлении связывания ионов, т.е. образования малорастворимых веществ (осадков, газов) или слабых электролитов. Если слабые электролиты, осадки или газы имеются как среди исходных веществ, так и среди продуктов реакции, то процессы протекают обратимо и равновесие смещено в сторону образования наименее растворимых веществ или наиболее слабых электролитов (с меньшим значением константы диссоциации).
Сущность обменных реакций в растворах электролитов наиболее полно выражается при записи сокращенных ионно-молекулярных уравнений, в которых сильные электролиты записываются в ионной форме, а остальные вещества – в молекулярной. Например, уравнение реакции нейтрализации сильной кислоты сильным основанием
выражается сокращенным ионно-молекулярным уравнением
,
из которого следует, что процесс приводит к образованию слабого электролита – воды.
К реакциям обмена относятся также реакции нейтрализации слабого основания сильной кислотой, слабой кислоты сильным основанием и реакции в растворах солей.
Гидролиз солей – обменное взаимодействие ионов растворенной соли с молекулами воды, приводящее к образованию слабого электролита.
Гидролизу подвергаются растворимые соли, в состав которых входят ионы, являющиеся производными слабых электролитов. В большинстве случаев реакции гидролиза приводят к изменению характера среды, т.е. величины рН раствора. Характер среды и образующихся продуктов гидролиза зависит от природы растворенной соли.
Количественными характеристиками гидролиза являются степень и константа гидролиза. Степень гидролиза (h) характеризует долю ионов, подвергшихся гидролизу, и зависит от природы соли, температуры, концентрации раствора.
Константа
гидролиза
–
константа равновесия процесса гидролиза,
характеризует глубину
его протекания. Численное значение Кг
зависит от природы соли, температуры и
не зависит от концентрации раствора.
Степень и константа гидролиза связаны соотношением
|
|
В зависимости от природы соли различают следующие случаи гидролиза солей: гидролиз по катиону, по аниону, по катиону и аниону.