- •1.Классификация тса.
- •2. Дискретные устройства автоматики.
- •3.Аналоговые устройства автоматики.
- •4.Электромагниты. Статические и динамические характеристики.
- •5.Поляризованные электромагниты.
- •6.Электромагниты переменного тока.
- •7.Классификация муфт.
- •8.Электромагнитные муфты.
- •9.Трансформаторы.
- •10.Автотрансформаторы.
- •11.Феррорезонансные устройства.
- •12.Феррорезонансные стабилизаторы напряжения.
- •13.Магнитные усилители.
- •14.Эму постоянного тока с преобразователями.
- •15.Электромагнитные усилители.
- •16.Тиристорные приводы.
- •17.Импульсное управление двигателями.
- •18.Вентильные двигатели.
- •19.Эму переменного тока.
- •20.Асинхронные машины.
- •21.Двухфазные двигатели.
- •22.Частотное управление 2ух фазными двигателями.
- •23.Управление двухфазными двигателями.
- •24.Шаговые двигатели.
- •25.Магнитные двигатели.
- •26. Двигатели для микроперемещений.
- •27.Тахогенераторы.
- •28. Исполнительные устройства са.
- •29.Электромагнитные исполнительные механизмы.
- •30.Электродвигательные исполнительные механизмы.
- •31.Классификация пневматических исполнительных механизмов.
- •32.Электропневматические преобразователи.
- •33.Организация питания пневматических устройств и систем.
- •34.Гидравлические им. Классификация, принципиальные и структурные схемы.
- •35.Принципиальные схемы гидропривода и пневмопривода.
- •36.Устройства динамического преобразования.
- •37.Цифроаналоговые преобразователи.
- •38.Аналогово-цифровые преобразователи.
- •39.Обобщенные структурные схемы регуляторов с релейными и аналоговыми элементами.
- •40.Цифровые и цифроаналоговые регуляторы. Структурные схемы, статические и динамические характеристики.
- •41.Цифровые и цифроаналоговые регуляторы. Структурные схемы, статические и динамические характеристики.
- •42. Регулятор прямого действия. Структурные схемы, статические и динамические характеристики.
- •43.Устройства связи увк с объектами управления.
- •44.Организация обмена информацией между увк и объектом управления.
- •45.Широтно-импульсная модуляция.
12.Феррорезонансные стабилизаторы напряжения.
Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки.
По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило, тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.
В электрических цепях при последовательном или параллельном соединении нелинейной катушки индуктивности и емкостного элемента при плавном изменении напряжения или тока источника питания наблюдается явление скачкообразного изменения соответственно тока в цепи или напряжения на элементах цепи. В электротехнике такие явления называются феррорезонансными
Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а в некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.
Феррорезонансный стабилизатор состоит из двух дросселей: с не насыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.
13.Магнитные усилители.
Магнитный усилитель — это статический аппарат, предназначенный для управления величиной переменного тока посредством слабого постоянного тока. Применяется в схемах автоматического регулирования электродвигателей переменного тока.
Принцип действия – работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода. На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек, соединённых последовательно. На среднем стержне размещается обмотка управления из большого количества витков W=. Если ток в неё не подаётся, а к рабочей обмотке, соединённой последовательно с нагрузкой, подведено переменное напряжение U~, то из-за малого количества витков W~ магнитопровод не насыщается, и почти всё напряжение падает на реактивном сопротивлении рабочих обмоток Z~. На нагрузке в этом случае выделяется малая мощность.
Если теперь пропустить по обмотке управления ток Iу, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате реактивное сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи — увеличивается. Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.
Другими словами магнитный усилитель — это управляемая постоянным током индуктивность, которая включается в цепь переменного тока последовательно с нагрузкой. При большой индуктивности ток в последовательной цепи и в нагрузке маленький, при малой индуктивности ток в последовательной цепи и в нагрузке большой.
В последнее время магнитный усилитель был частично потеснён полупроводниковыми приборами, но в ряде применений по-прежнему не имеет конкурентов.
Основное назначение - управление силовым электроприводом (распространены в строительной технике), также применялись в бытовых стабилизаторах переменного тока, в регуляторах освещения киноконцертных залов, в двоичной ЭВМ ЛЭМ-1 Л. И.
