
- •1. Электрический заряд и его дискретность. Закон сохранения заряда.
- •2. Закон Кулона. Полевая трактовка закона Кулона.
- •3. Напряжённость электрического поля. Принцип суперпозиции.
- •4. Поток вектора напряженности электростатического поля. Теорема Гаусса.
- •5. Работа электростатического поля. Потенциальность электростатического поля.
- •6. Скалярный потенциал. Неоднозначность скалярного потенциала и его нормировка.
- •7. Потенциал точечного заряда, системы точечных зарядов и непрерывного распределения зарядов.
- •8. Связь потенциала электростатического поля с напряжённостью.
- •9. Нахождение электрического поля прямым применением закона Кулона.
- •10. Нахождение электрического поля с использованием теоремы Гаусса.
- •11. Электрическое поле при наличии проводников. Распределение зарядов на поверхности проводника. Поле вблизи поверхности проводника. Электростатическая защита.
- •12. Потенциал проводника. Ёмкость уединённого проводника. Система проводников.
- •13. Конденсаторы и их ёмкость.
- •14. Понятие о методе изображений для решения некоторых электростатических задач.
- •15. Электрическое поле при наличии диэлектриков.
- •16. Диполь в электростатическом поле. Молекулярная картина поляризации диэлектриков.
- •17. Поляризация диэлектриков. Механизмы поляризации. Виды диэлектриков.
- •18. Условия существования электрического тока. Сторонние электродвижущие силы. Источники эдс.
- •19. Закон Ома для замкнутой цепи и участка цепи, содержащего источник эдс.
- •20. Законы Ома и Джоуля-Ленца.
- •21. Правила Кирхгофа.
- •22. Природа носителей заряда в металлах. Классическая теория электропроводности. Зависимость электропроводности от температуры.
- •23. Собственная проводимость полупроводников. Примесная (электронная и дырочная) проводимость. Доноры и акцепторы.
- •24. Механизм электропроводности электролитов.
- •25. Электропроводность газов. Ионизация и рекомбинация ионов. Основные типы газового разряда. Плазменное состояние вещества. Термоэлектронная эмиссия.
- •26. Закон взаимодействия элементов тока. Полевая трактовка законов взаимодействия элементов тока.
- •27. Закон Био-Савара. Вектор магнитной индукции.
- •28. Закон Ампера. Вихревой характер магнитного поля.
- •29. Движение заряжённых частиц в магнитном поле. Сила Лоренца.
- •30. Магнитное поле при наличии магнетиков. Поле элементарного тока. Магнитный момент элементарного тока. Механизмы намагничивания.
- •31. Диамагнетики и парамагнетики. Природа диамагнетизма. Зависимость парамагнитной восприимчивости от температуры. Закон Кюри.
- •32. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •33. Коэффициент индуктивности.
- •34. Явление самоиндукции при замыкании и размыкании электрической цепи.
- •35. Магнитная энергия тока.
- •36. Свободные электрические колебания в колебательном контуре.
- •37. Вынужденные электрические колебания в колебательном контуре.
- •38. Затухающие электрические колебания в колебательном контуре. Цепь с источником переменных сторонних эдс, сопротивлением, ёмкостью и индуктивностью.
- •39. Метод векторных диаграмм.
- •40. Работа и мощность переменного тока.
- •41. Волновые процессы. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Плоские и сферические волны.
- •42. Синусоидальные (гармонические) волны. Уравнение бегущей волны. Длина волны и волновое число. Волновое уравнение. Фазовая скорость. Энергия волны.
- •43. Шкала электромагнитных волн. Оптический диапазон электромагнитных волн. Структура и свойства плоских электромагнитных волн. Энергия электромагнитных волн.
- •44. Интенсивность. Фотометрические понятия и величины. Энергетические и световые фотометрические величины. Эталон силы света. Соотношения между энергетическими и световыми величинами.
- •45. Принцип суперпозиции волн. Стоячие волны. Биения. Экспериментальные исследования стоячих электромагнитных волн.
- •46. Электромагнитная природа света. Когерентность. Явление интерференции.
- •47. Интерференция когерентных точечных источников. Методы осуществления интерференции. Осуществление интерференции по методу деления волнового фронта. Схемы Юнга, Френеля, Ллойда.
- •48. Осуществление интерференции по методу деления амплитуды. Интерференция в тонких плёнках. «Просветление» оптики.
- •49. Принцип Гюйгенса-Френеля. Дифракция. Дифракционная решётка. Условия максимумов и минимумов.
- •50. Отражение света на плоской зеркальной поверхности. Отражение света на сферической зеркальной поверхности.
- •51. Основные понятия и законы геометрической оптики.
- •52. Построение изображения в выпуклом зеркале. Формула сферического зеркала.
- •53. Построение изображения в вогнутом зеркале. Формула сферического зеркала.
- •54. Преломление света на границе раздела двух сред. Закон преломления Снеллиуса.
- •55. Преломление света на сферической поверхности. Формула тонкой линзы.
- •56. Оптические приборы; лупа, микроскоп, телескоп. Оптическая схема, увеличение. Разрешающая способность оптических приборов.
- •57. Плоские электромагнитные волны в среде. Поглощение света, законы поглощения.
- •58. Явление дисперсии. Нормальная и аномальная дисперсия.
- •59. Закон Брюстера и его физический смысл. Явление полного внутреннего отражения.
- •60. Поляризация плоских электромагнитных волн. Линейная, циркулярная и эллиптическая поляризация. Закон Малюса. Поляризационные приспособления.
- •61. Вращение плоскости поляризации в кристаллических и аморфных веществах.
- •62. Искусственная анизотропия, вызываемая деформацией, электрическими и магнитными полями.
60. Поляризация плоских электромагнитных волн. Линейная, циркулярная и эллиптическая поляризация. Закон Малюса. Поляризационные приспособления.
Поляризация волн — явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.
Линейная поляризация - состояние распространяющейся электромагнитной волны (например, световой), при котором её электрический вектор Е в каждой точке пространства, занятого волной, совершая колебания, остаётся всё время в одной и той же плоскости, проходящей через направление распространения волны (то же справедливо и по отношению к магнитному вектору волны Н).
Циркулярная поляризация - когда эллипс поляризации представляет собой окружность.
Эллиптическая поляризация – поляризация, при которой конец E описывает эллипс в плоскости, перпендикулярной лучу.
Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.
где I₀ — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора, ka — коэффициент прозрачности поляризатора.
В основе работы поляризационных приспособлений, служащих для получения поляризованного света, лежит явление двойного лучепреломления. Наиболее часто для этого применяются призмы и поляроиды. Призмы делятся на два класса:
1) призмы, дающие только плоскополяризованный луч (поляризационные призмы);
2) призмы, дающие два поляризованных во взаимно перпендикулярных плоскостях луча (двоякопреломляющие призмы).
Поляризационные призмы построены по принципу полного отражения одного из лучей (например, обыкновенного) от границы раздела, в то время как другой луч с другим показателем преломления проходит через эту границу.
Двояко преломляющие призмы используют различие в показателях преломления обыкновенного и необыкновенного лучей, чтобы развести их возможно дальше друг от друга.
61. Вращение плоскости поляризации в кристаллических и аморфных веществах.
Вращение плоскости поляризации - явление, происходящее с лучами поляризованного света, проходящими через некоторые кристаллы, жидкости и пары, находящиеся в естественном состоянии или же под влиянием магнетизма.
Если пропустить солнечный луч сквозь небольшое отверстие, сделанное в непрозрачной пластинке, за которой помещен кристалл исландского шпата, то из кристалла выйдут два луча равной силы света. Солнечный луч разделился, с небольшой потерей силы света, в кристалле на два луча равной световой силы, но по некоторым свойствам отличные от неизмененного солнечного луча и друг от друга.
Вращение плоскости поляризации в аморфных веществах является молекулярным свойством. Молекуле можно соответствующим образом приписать определенную вращательную способность, которая не зависит от агрегатного состояния вещества. Кристаллическая структура вещества также может обусловливать вращательную способность. Вещества, способные вращать плоскость поляризации, называются оптически активными.