
- •1. Электрический заряд и его дискретность. Закон сохранения заряда.
- •2. Закон Кулона. Полевая трактовка закона Кулона.
- •3. Напряжённость электрического поля. Принцип суперпозиции.
- •4. Поток вектора напряженности электростатического поля. Теорема Гаусса.
- •5. Работа электростатического поля. Потенциальность электростатического поля.
- •6. Скалярный потенциал. Неоднозначность скалярного потенциала и его нормировка.
- •7. Потенциал точечного заряда, системы точечных зарядов и непрерывного распределения зарядов.
- •8. Связь потенциала электростатического поля с напряжённостью.
- •9. Нахождение электрического поля прямым применением закона Кулона.
- •10. Нахождение электрического поля с использованием теоремы Гаусса.
- •11. Электрическое поле при наличии проводников. Распределение зарядов на поверхности проводника. Поле вблизи поверхности проводника. Электростатическая защита.
- •12. Потенциал проводника. Ёмкость уединённого проводника. Система проводников.
- •13. Конденсаторы и их ёмкость.
- •14. Понятие о методе изображений для решения некоторых электростатических задач.
- •15. Электрическое поле при наличии диэлектриков.
- •16. Диполь в электростатическом поле. Молекулярная картина поляризации диэлектриков.
- •17. Поляризация диэлектриков. Механизмы поляризации. Виды диэлектриков.
- •18. Условия существования электрического тока. Сторонние электродвижущие силы. Источники эдс.
- •19. Закон Ома для замкнутой цепи и участка цепи, содержащего источник эдс.
- •20. Законы Ома и Джоуля-Ленца.
- •21. Правила Кирхгофа.
- •22. Природа носителей заряда в металлах. Классическая теория электропроводности. Зависимость электропроводности от температуры.
- •23. Собственная проводимость полупроводников. Примесная (электронная и дырочная) проводимость. Доноры и акцепторы.
- •24. Механизм электропроводности электролитов.
- •25. Электропроводность газов. Ионизация и рекомбинация ионов. Основные типы газового разряда. Плазменное состояние вещества. Термоэлектронная эмиссия.
- •26. Закон взаимодействия элементов тока. Полевая трактовка законов взаимодействия элементов тока.
- •27. Закон Био-Савара. Вектор магнитной индукции.
- •28. Закон Ампера. Вихревой характер магнитного поля.
- •29. Движение заряжённых частиц в магнитном поле. Сила Лоренца.
- •30. Магнитное поле при наличии магнетиков. Поле элементарного тока. Магнитный момент элементарного тока. Механизмы намагничивания.
- •31. Диамагнетики и парамагнетики. Природа диамагнетизма. Зависимость парамагнитной восприимчивости от температуры. Закон Кюри.
- •32. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •33. Коэффициент индуктивности.
- •34. Явление самоиндукции при замыкании и размыкании электрической цепи.
- •35. Магнитная энергия тока.
- •36. Свободные электрические колебания в колебательном контуре.
- •37. Вынужденные электрические колебания в колебательном контуре.
- •38. Затухающие электрические колебания в колебательном контуре. Цепь с источником переменных сторонних эдс, сопротивлением, ёмкостью и индуктивностью.
- •39. Метод векторных диаграмм.
- •40. Работа и мощность переменного тока.
- •41. Волновые процессы. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Плоские и сферические волны.
- •42. Синусоидальные (гармонические) волны. Уравнение бегущей волны. Длина волны и волновое число. Волновое уравнение. Фазовая скорость. Энергия волны.
- •43. Шкала электромагнитных волн. Оптический диапазон электромагнитных волн. Структура и свойства плоских электромагнитных волн. Энергия электромагнитных волн.
- •44. Интенсивность. Фотометрические понятия и величины. Энергетические и световые фотометрические величины. Эталон силы света. Соотношения между энергетическими и световыми величинами.
- •45. Принцип суперпозиции волн. Стоячие волны. Биения. Экспериментальные исследования стоячих электромагнитных волн.
- •46. Электромагнитная природа света. Когерентность. Явление интерференции.
- •47. Интерференция когерентных точечных источников. Методы осуществления интерференции. Осуществление интерференции по методу деления волнового фронта. Схемы Юнга, Френеля, Ллойда.
- •48. Осуществление интерференции по методу деления амплитуды. Интерференция в тонких плёнках. «Просветление» оптики.
- •49. Принцип Гюйгенса-Френеля. Дифракция. Дифракционная решётка. Условия максимумов и минимумов.
- •50. Отражение света на плоской зеркальной поверхности. Отражение света на сферической зеркальной поверхности.
- •51. Основные понятия и законы геометрической оптики.
- •52. Построение изображения в выпуклом зеркале. Формула сферического зеркала.
- •53. Построение изображения в вогнутом зеркале. Формула сферического зеркала.
- •54. Преломление света на границе раздела двух сред. Закон преломления Снеллиуса.
- •55. Преломление света на сферической поверхности. Формула тонкой линзы.
- •56. Оптические приборы; лупа, микроскоп, телескоп. Оптическая схема, увеличение. Разрешающая способность оптических приборов.
- •57. Плоские электромагнитные волны в среде. Поглощение света, законы поглощения.
- •58. Явление дисперсии. Нормальная и аномальная дисперсия.
- •59. Закон Брюстера и его физический смысл. Явление полного внутреннего отражения.
- •60. Поляризация плоских электромагнитных волн. Линейная, циркулярная и эллиптическая поляризация. Закон Малюса. Поляризационные приспособления.
- •61. Вращение плоскости поляризации в кристаллических и аморфных веществах.
- •62. Искусственная анизотропия, вызываемая деформацией, электрическими и магнитными полями.
33. Коэффициент индуктивности.
Коэффициент индуктивности (коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.
— магнитный поток,
I — ток в контуре, L — индуктивность.
Единицы измерения в СИ: Гн.
34. Явление самоиндукции при замыкании и размыкании электрической цепи.
При замыкании в электрической цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое электрическое поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
При размыкании электрической цепи ток убывает, возникает уменьшение магнитного потока в катушке, возникает вихревое электрическое поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
35. Магнитная энергия тока.
Всякий электрический ток всегда окружен магнитным полем. Стационарные магнитные поля - поля постоянных электрических токов.
Для установления тока I в электрической цепи необходимо совершить работу. Эту работу производит источник тока, включенный в цепь. В случае нарастающего тока работа источника больше количества выделившегося тепла. Дополнительная работа А, затрачиваемая на увеличение силы тока от 0 до I, равна энергии W, запасаемой контуром при установлении в нем тока.
A
= W =
,
(1)
где
/2
- собственная энергия тока I в данном
контуре с индуктивностью L.
Индуктивностью замкнутого проводящего контура называется скалярная величина, равная отношению магнитного потока, сцепленного с контуром (потокосцепления), к силе тока в этом контуре. Единицей индуктивности в системе СИ является генри (Гн). Это индуктивность такого контура, в котором при силе тока в 1 А возникает магнитный поток в 1 Вб. 1 Гн = 1 Вб/А.
Увеличение силы тока I в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому полю, обладает энергией. Собственная энергия токов есть не что иное, как энергия магнитного поля данного контура с током.
В качестве примера неоднородного поля можно рассмотреть магнитное поле в вакууме, создаваемое длинным прямым проводником с постоянным током I.
Пусть проводник расположен перпендикулярно плоскости рисунка и электрический ток I направлен к нам. Силовые линии магнитного поля в этом случае являются концентрическими окружностями, ось которых совпадает с проводником.
Чем больше расстояние до проводника, тем меньше магнитная индукция и, следовательно, объемная плотность магнитной энергии.
36. Свободные электрические колебания в колебательном контуре.
Электромагнитные колебания — это колебания электрических и магнитных полей, которые сопровождаются периодическим изменением заряда, тока и напряжения.
Простейшей системой, где могут возникнуть и существовать электромагнитные колебания, является колебательный контур. Колебательный контур — это система, состоящая из катушки индуктивности и конденсатора.
Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток.
В контуре происходят свободные электрические колебания. Они совершаются самостоятельно без воздействия каких-либо внешних эдс, только благодаря начальному заряду конденсатора.
Эти колебания являются гармоническими, т. е. представляют собой синусоидальный переменный ток. В процессе колебаний электроны не переходят с одной обкладки конденсатора на другую.
Электрическое колебание в контуре представляет собой периодический переход потенциальной энергии электрического поля в кинетическую энергию магнитного поля и обратно.