Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Obshy_sbor.doc
Скачиваний:
33
Добавлен:
18.04.2019
Размер:
290.3 Кб
Скачать

21. Самоорганизация и деградация как две тенденции развития открытых систем.

Открытая система - это система, обменивающаяся веществом и энергией с окружающей средой.

Синергетика — это теория, исследующая процессы самоорганизации, устойчивости, распада и возрождения самых разнообразных структур живой и неживой природы . Во всех рассматриваемых синергетикой системах процесс самоорганизации идет обязательно с участием большого числа объектов (атомов, молекул или более сложных преобразований) и, следовательно, определяется совокупным, кооперативным действием.

Она опирается на принцип положительной обратной связи, когда изменения, возникающие в системе, не подавляются и корректируются, а, наоборот, постепенно накапливаются и в конце концов приводят к разрушению старой и возникновению новой системы.

Самоорганизация системы - процесс упорядочения элементов одного уровня в системе за счёт внутренних факторов, без внешнего специфического воздействия. Результат - появление единицы следующего качественного уровня.

Главенствующую роль в эволюции окружающего мира играют не порядок, стабильность и равновесие, а неустойчивость и неравновесность, т. е. все системы непрестанно флуктуируют. В особой точке бифуркации флуктуация достигает такой силы, что организация системы не выдерживает и разрушается, и принципиально невозможно предсказать: станет ли состояние системы хаотическим (деградирует) или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности, который называют диссипативной структурой. Новые структуры называются диссипативными, потому что для их поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят. Диссипативные структуры существуют лишь постольку, поскольку система диссипирует (рассеивает) энергию и, следовательно, производит энтропию.

22. Статические и термодинамические свойства макросистем.

Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй — молекулярной физики.

«При анализе тепловых процессов в макросистемах существует 2 подхода: статический и термодинамический.»

Термодинамика представляет собой науку о тепловых явлениях, в которой не учитывается молекулярное строение тел. В термодинамике тепловые явления описываются с помощью величин, регистрируемых приборами, не реагирующими на воздействие отдельных молекул (термометр, манометр и др.). Все законы термодинамики относятся к телам, число молекул которых огромно. Такие тела называют макроскопическими. Они образуют макросистемы. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень и т. п. — все это примеры макросистем.

Постулаты Дальтона: все хим. элементы состоят из атомов, атомы одного хим. элемента одинаковы по массе, разные атомы имеют разные массы.

Основа статического подхода.

1.любое тело состоит из большого числа молекул.2.молекулы находятся в хаотическом движением.3.скорость движения зависит от температуры.

В основе молекулярной физики лежит молекулярно-кинетическая теория (MKT), которая объясняет строение и свойства тел движением и взаимодействием частиц (молекул, атомов, ионов), из которых состоят тела. Свойства тел, которые непосредственно наблюдаются на опыте (давление, температура и др.), она истолковывает как суммарный результат действия частиц. При этом она пользуется статистическим методом, интересуясь не индивидуальными характеристиками отдельных частиц, а лишь средними значениями физических величин, которые характеризуют движение частиц, составляющих систему.