Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Цифровая звукозапись.doc
Скачиваний:
7
Добавлен:
17.04.2019
Размер:
124.42 Кб
Скачать

Цифровая звукозапись.

При цифровой звукозаписи аналоговый звуковой сигнал преобразуется в код из последовательностей импульсов, которые соответствуют двоичным числам (0 и 1) и характеризуют амплитуду волны в каждый момент времени. Цифровые аудиосистемы обладают огромными преимуществами перед аналоговыми системами в отношении динамического диапазона, робастности (информационной надежности) и сохранения качества при записи и копировании, передаче на расстояние и мультиплексировании и т.п.

Аналого-цифровое преобразование.

Процесс преобразования из аналоговой формы в цифровую состоит из нескольких шагов.

Дискретизация.

Периодически с фиксированной частотой повторения делаются дискретные отсчеты мгновенных значений волнового процесса. Чем выше частота отсчетов, тем лучше. По теореме Найквиста, частота дискретизации должна не менее чем вдвое превышать наивысшую частоту в спектре обрабатываемого сигнала. Чтобы не допустить искажений, связанных с дискретизацией, на входе преобразователя необходимо установить фильтр нижних частот с очень крутой характеристикой и частотой отсечки, равной половине частоты дискретизации. К сожалению, идеальных фильтров нижних частот не существует, и фильтр с очень крутой характеристикой будет вносить искажения, которые могут свести на нет преимущества цифровой техники. Дискретизацию обычно проводят с частотой 44,1 кГц, которая позволяет применять практически приемлемый фильтр для защиты от искажений. Частота 44,1 кГц была выбрана потому, что она совместима с частотой строчной развертки телевидения, а все ранние цифровые записи производились на видеомагнитофонах.

Эта же частота 44,1 кГц является стандартной частотой дискретизации для проигрывателей компакт-дисков и большей части бытовой аппаратуры, за исключением устройств записи на цифровую аудиоленту (DAT), в которых используется частота 48 кГц. Такая частота выбрана специально для того, чтобы воспрепятствовать нелегальному переписыванию компакт-дисков на цифровую магнитную ленту. В профессиональном оборудовании используется главным образом частота 48 кГц. В цифровых системах, применяемых для целей вещания, обычно работают с частотой 32 кГц; при таком выборе полезный диапазон частот ограничивается величиной 15 кГц (из-за предела дискретизации), но частота 15 кГц считается достаточной для целей вещания.

Квантование.

С ледующий шаг состоит в том, чтобы преобразовать дискретные отсчеты в код. Это преобразование выполняется путем измерения амплитуды каждого отсчета и сравнения ее со шкалой дискретных уровней, называемых уровнями квантования, величина каждого из которых представлена числом. Амплитуда отсчета и уровень квантования редко в точности совпадают друг с другом. Чем больше уровней квантования, тем выше точность измерений. Различия между амплитудами отсчетов и квантования проявляются в воспроизводимом звуке как шум.

Кодирование.

Уровни квантования считаются в виде единиц и нулей. 16-разрядный двоичный код (такой же, как используемый для компакт-дисков) дает 65536 уровней квантования, что позволяет иметь отношение сигнал/шум квантования выше 90 дБ. Получаемый сигнал отличается высокой робастностью, так как от воспроизводящего оборудования требуется лишь распознать два состояния сигнала, т.е. определять, превышает ли он половину максимально возможного значения. Поэтому цифровые сигналы можно многократно записывать и усиливать, не опасаясь ухудшения их качества.

Цифро-аналоговое преобразование.

Чтобы цифровой сигнал преобразовать в звуковой, его нужно сначала преобразовать в аналоговую форму. Такое преобразование обратно аналого-цифровому преобразованию. Цифровой код преобразуется в последовательность уровней (соответствующих исходным уровням дискретизации), которые сохраняются и считываются с использованием исходной частоты дискретизации.

Чаще всего требуемая полоса звуковых частот ограничивается 20...22 кГц, а частота дискретизации при этом выбирается равной 44,1 или 48 кГц.

Это обусловлено тем, что между наивысшей частотой звукового диапазона fm, и половиной частоты дискретизации Fд/2 должен быть некоторый интервал, в который нужно поместить срез амплитудно-частотной характеристики (АЧХ) фильтра низких частот (ФНЧ), расположенного на входе блока аналого-цифрового преобразования. Это ФНЧ, который называется антиэлайсинг фильтром, нужен для того, чтобы ни одна составляющая спектра выше Fд/2 не попала на преобразователь. Дело в том, что спектр дискретизованного сигнала обладает периодической структурой. Кроме низкочастотной части, отображающей сам звуковой сигнал, он имеет ещё и высокочастотные компоненты в виде боковых полос с центрами в точках, кратных частоте дискретизации (рис. 3). Если спектр звукового сигнала перед преобразованием не ограничить, то его высокочастотная часть может наложиться на смежную боковую полосу. При этом в преобразованном сигнале возникнут неустранимые искажения субдискретизации в виде паразитных высокочастотных составляющих (рис. 3.а). Звучание фонограммы будет безнадежно испорчено.

Рис. 3 - Спектр дисктретизированного сигнала: а) без ФНЧ; б) с ФНЧ

Поскольку в процессе квантования отсчеты могут принимать только значения кратные шагу квантования Δ, то при оценке истинного значения выборки неизбежно будет возникать некоторая ошибка q (рис. 4). Очевидно, что величина ошибки равна половине шага квантования и не зависит от уровня квантуемого сигнала. Функцию q(t) принято называть шумом квантования. Шум квантования будет тем ниже, чем меньше шаг квантования или, чем больше число разрядов квантования.

Рис. 4 - Шум квантования

Влияние шума сильно зависит от уровня преобразуемого аналогового сигнала. Если его амплитуда мала, то возникают искажения, обусловленные появлением высших гармоник из-за зубчатой формы шума квантования. На слух это воспринимается как искажения, а не как шум.

Ослабить влияние таких искажений можно с помощью добавления другого шума. Если подмешать во входной сигнал так называемый "белый" шум (шум, амплитуда которого практически постоянна в широком диапазоне частот), то корреляция (связь) между шумами квантования и амплитудой сигнала нарушается. При этом воспроизведенный сигнал уже не будет выглядеть искаженным. Добавление такого шумоподобного маскирующего сигнала (дифера) является важной частью процесса преобразования.

Назначение ещё одного элемента тракта аналого-цифрового преобразования - устройства выборки и хранения (УВХ) ясно из его названия (см. рис. 2). Оно предназначено для удержания значения квантируемого сигнала на время преобразования.

Аналого-цифровое преобразование, при котором расстояние между уровнями квантования одинаково во всем диапазоне изменения амплитуды преобразуемого сигнала называется линейным или квантированием с постоянным шагом (рис. 5.а).

Иногда для преобразования используют нелинейное квантование или квантование с переменным шагом (рис. 5.б). В этом случае шаг квантования увеличивается с увеличением уровня преобразуемого сигнала. Для слабых сигналов шаг квантования маленький, для сильных сигналов - большой. При прочих равных условиях такой вид квантования позволяет лучше передавать слабые сигналы, поскольку отношение сигнал/шум в этом случае будет выше, чем в случае линейного квантования. Кроме того, нелинейное квантование позволяет значительно повысить плотность записи (или скорость передачи информации), так как малым числом разрядов можно передавать большой динамический диапазон сигнала.

Рис. 5 - Характеристики квантования: а) линейная; б) нелинейная логарифмическая; в) нелинейная трехсегментная

На рис. 5.б характеристика квантования имеет вид логарифмической кривой, что оптимальным образом отвечает условиям задачи. На практике реализовать такую характеристику затруднительно. Поэтому ее аппроксимируют ломанной линией, состоящей из отрезков, разбивающих весь диапазон преобразования на ряд поддиапазонов, в пределах которых шаг квантования (рис. 5.в). Сегментов может быть от трех до десяти и более. Чем их больше, тем лучше, но при этом реализация системы становится сложнее.

Преобразование линейной характеристики в нелинейную осуществляется после АЦП с помощью специального цифрового кодирующего устройства. Обратное преобразование в воспроизводящем (или приемном) устройстве реализуется декодером с характеристикой, представляющей собой зеркальное отражение характеристики кодера относительно линейной характеристики.

При всех своих достоинствах, нелинейное квантование имеет один очень существенный недостаток. Слабые сигналы (или обертона) на фоне сильного сигнала (на участке характеристики с широким шагом квантования) могут сильно искажаться или даже исчезать совсем. Поэтому качество звука при нелинейном квантовании всегда хуже, чем при линейном.