
- •1 Вопрос - Системы статически определимые и неопределимые.
- •3 Неизвестных, 2 уравнения
- •2 Вопрос – импульс. Закон сохранения импульса
- •Элементарный и полный импульс силы.
- •1 Вопрос -Напряжения при растяжении (сжатии)
- •5.3. Основные типы задач при расчете на прочность
- •2 Вопрос - Ускорение Кореолиса.
- •1 Вопрос – диаграмма растяжения
- •2 Вопрос - Вращательное движение твердого тела. Закон движения.
- •4 Билет
- •1 Вопрос-Сила упругости. Закон Гука
- •2 Вопрос - Сложное движение точки. Абсолютное , относительное и переносное движения.
- •Билет 5
- •1 Вопрос - Система сходящихся сил. Условие равновесия.
- •2 Вопрос - Первая или прямая задача динамики
- •6 Билет
- •1 Вопрос- Оценка прочности
- •2 Вопрос - Правила сложения ускорений в сложном движении.
- •7 Билет
- •1 Вопрос – Напряжения при чистом сдвиге,изгибе и кручении стержня.
- •2 Вопрос - Поступательное движение.
- •1 Вопрос- Аксиомы статики
- •2 Вопрос-кинетическая энергия
- •9 Билет
- •1 Вопрос- Условия равновесия плоской системы сил.
- •2 Вопрос- Аксиомы классической механики
- •Геометрия масс
- •2 Вопрос - Правила сложения скоростей в сложном движении.
- •Кинетическая энергия
- •13 Билет
- •1 Вопрос – момент силы.Представление момента как вектора Момент силы относительно точки
- •Момент силы относительно оси
- •14 Билет
- •1 Вопрос – геометрическое условие равновесия пространственной системы сил
- •Закон сохранения механической энергии
- •Формулировка закона сохранения механической энергии.
- •15 Билет
- •1 Вопрос – Сила. Координатный способ задания сил.
- •2 Вопрос -Теорема об изменении момента количества движения.
- •Теорема об изменении момента количеств движения.
- •Закон сохранения теоремы.
- •Применение теоремы.
- •Момент количеств движения тела в поступательном движении и тела, вращающегося вокруг неподвижной оси.
- •1 Вопрос – аналитические условия Равновесия тела под действием пространственной системы сил
- •2 Вопрос- momeнt количества движения
- •17 Билет
- •1 Вопрос-Равновесие тела под действием плоской системы сил
- •Об ударе.Рассматриваются следующие вопросы:
- •1 Вопрос-внутренние усилия,деформации и их связь
- •2 Вопрос-плоскопараллельное движение
- •19 Билет
- •1 Вопрос – Правила сложения моментов. Главный момент системы.
- •2 Вопрос - Скорость и ускорение при координатном способе задания закона движения.
- •20 Билет
- •1 Вопрос-Основные механические характеристики материалов
- •2 Вопрос - Вращательное движение твердого тела. Закон движения.
- •21 Билет
- •1 Вопрос- правила сложения сил.Равнодействующая системы сходящихся сил Система сил
- •2 Вопрос - Способы задания закона движения.
- •1 Вопрос – Связи и их реакции. Типы связей.
- •2 Вопрос- Вторая или обратная задача динамики:
- •1 Вопрос- Пара сил. Момент пары.
- •Свойства пар
- •Сложение пар
- •1 Вопрос - Сила. Классификация сил
- •Трение Трение скольжения
- •Законы Кулона
- •Угол трения. Условия равновесия.
- •Трение качения
- •1 Вопрос
19 Билет
1 Вопрос – Правила сложения моментов. Главный момент системы.
Если на тело, которое может вращаться вокруг какой-либо точки, действует одновременно несколько сил, то для сложения моментов этих сил следует использовать правило сложения моментов сил.
Правило сложения моментов сил гласит — Результирующий вектор момента силы равен геометрической сумме составляющих векторов моментов сил.
Для правила сложения моментов сил различают два случая:
1) Моменты сил лежат в одной плоскости, оси вращения параллельны. Их сумма определяется путем алгебраического сложения.
2) Моменты сил лежат в разных плоскостях, оси вращения не параллельны. Сумма моментов определяется путем геометрического сложения векторов.
2 Вопрос - Скорость и ускорение при координатном способе задания закона движения.
Скорость:
Вычисляются
проекции вектора скорости на каждую
координатную ось.
;
Модуль вектора скорости определяется через её проекцию по формуле:
Ускорение:
;
;
;
Полное
ускорение по модулю равно
и направление соответствует с направляющими
косинусами.
;
;
;
20 Билет
1 Вопрос-Основные механические характеристики материалов
Для количественной оценки основных свойств материалов, как
Рис. 2.9 |
Наибольшее напряжение, до которого материал следует закону Гука, называетсяпределом пропорциональности П . В пределах закона Гука тангенс угла наклона прямой = f () к оси определяется величинойЕ.
Упругие свойства материала сохраняются до напряжения У , называемого пределом упругости. Под пределом упругости У понимается такое наибольшее напряжение, до которого материал не получает остаточных деформаций, т.е. после полной разгрузки последняя точка диаграммы совпадает с начальной точкой 0.
Величина Т называется пределом текучести материала. Под пределом текучести понимается то напряжение, при котором происходит рост деформаций без заметного увеличения нагрузки. Если необходимо различать предел текучести при растяжении и сжатии Т соответственно заменяется на ТР и ТС . При напряжениях больших Т в теле конструкции развиваются пластические деформации П , которые не исчезают при снятии нагрузки.
Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит название предела прочности, или временного сопротивления, и обозначается через, ВР (при сжатии ВС ).
В табл. 2 приводятся значения указанных характеристик (в кН/м2) наиболее распространенных конструкционных материалов.
Таблица 2
Материал |
ТР |
ТС |
ВР |
ВС |
Е10-8 |
Сталь |
250000 |
250000 |
390000 |
|
2 |
Чугун |
140000 |
310000 |
150000 |
640000 |
0.7 |
Медь |
250000 |
250000 |
320000 |
|
1.1 |
Алюминий |
50000 |
50000 |
840000 |
|
0.75 |
При выполнении практических расчетов реальную диаграмму (рис. 2.9) упрощают, и с этой целью применяются различные аппроксимирующие диаграммы. Для решения задач с учетом упругопластических свойств материалов конструкций чаще всего применяется диаграмма Прандтля. По этой диаграмме напряжение изменяется от нуля до предела текучести по закону Гука = Е , а далее при росте , = Т (рис. 2.10).
Способность материалов получать остаточные деформации носит названиепластичности. На рис. 2.9 была представлена характерная диаграмма для пластических материалов.
Рис. 2.10 Рис. 2.11
Противоположным свойству пластичности является свойство хрупкости, т.е. способность материала разрушаться без образования заметных остаточных деформаций. Материал, обладающий этим свойством, называется хрупким. К хрупким материалам относятся чугун, высокоуглеродистая сталь, стекло, кирпич, бетон, природные камни. Характерная диаграмма деформации хрупких материалов изображена на рис. 2.11.