
- •I. Элементы линейной и векторной алгебры, аналитической геометрии.
- •1. Определители второго и третьего порядков. Основные свойства. Минор и алгебраическое дополнение. Понятие определителя n-ого порядка и его вычисление.
- •Свойства определителей.
- •2. Матрицы, действия над матрицами. Обратная матрица. Ранг матрицы.
- •Основные действия над матрицами.
- •Обратная матрица.
- •Свойства обратных матриц.
- •3. Системы линейных уравнений. Теорема Кронекера-Капелли (формулировка). Правило Крамера.
- •Элементарные преобразования систем.
- •Теорема Кронекера – Капелли. (условие совместности системы)
- •Метод Крамера.
- •4. Решение систем линейных уравнений матричным методом.
- •5. Метод Гаусса. Однородные системы линейных уравнений и их решение. Метод Гаусса.
- •Однородные системы линейных уравнений
- •6. Векторы. Линейные операции над векторами и их свойства.
- •Свойства векторов.
- •7. Проекция вектора на ось. Свойства проекций.
- •Некоторые свойства проекций
- •8. Линейная зависимость векторов. Разложение вектора по базису. Линейная зависимость векторов.
- •9. Декартова система координат. Координаты вектора. Система координат.
- •Декартова система координат.
- •Линейные операции над векторами в координатах.
- •10. Направляющие косинусы, длина вектора.
- •11. Деление отрезка в данном отношении.
- •12. Скалярное произведение векторов, его свойства, вычисление и применение.
- •13. Векторное произведение векторов, его свойства, вычисление и применение.
- •Свойства векторного произведения векторов:
- •14. Смешенное произведение векторов, его свойства, вычисление и применение.
- •Свойства смешанного произведения:
- •15. Прямая линия на плоскости. Различные способы задания. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой на плоскости. Уравнение линии на плоскости.
- •Уравнение прямой на плоскости.
- •Уравнение прямой по точке и вектору нормали.
- •Уравнение прямой по точке и направляющему вектору.
- •Параметрическое уравнение прямой
- •Уравнение прямой, проходящей через две точки.
- •2. Условие перпендикулярности.
- •16. Плоскость в пространстве. Различные способы задания. Взаимное расположение плоскостей. Расстояние от точки до плоскости. Общее уравнение плоскости.
- •Уравнение плоскости по точке и вектору нормали.
- •Уравнение плоскости в отрезках.
- •Уравнение плоскости, проходящей через три точки.
- •17. Прямая в пространстве. Различные способы задания. Взаимное расположение прямых в пространстве. Уравнение прямой в пространстве по точке и направляющему вектору.
- •Уравнение прямой в пространстве, проходящей через две точки.
- •Общие уравнения прямой в пространстве.
- •Условия параллельности и перпендикулярности прямых в пространстве.
- •Угол между прямыми в пространстве.
- •18. Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- •Условия параллельности и перпендикулярности прямой и плоскости в пространстве.
- •Эллипс.
- •Гипербола.
- •Парабола.
- •20. Поверхности второго порядка. Цилиндрические поверхности. Исследование поверхностей методом сечений. Поверхности второго порядка.
- •С фера:
- •К онус второго порядка:
- •Двуполостный гиперболоид:
- •Эллиптический параболоид:
- •Г иперболический параболоид:
- •II. Введение в математический анализ
- •21. Множество действительных чисел.
- •Операции над множествами.
- •22. Функция, область ее определения и способы задания. Сложные и обратные функции.
- •Способы задания функций
- •Сложная функция.
- •Обратная функция.
- •23. Свойства (четность, периодичность, монотонность, ограниченность) и графики функций.
- •24. Гиперболические функции, их свойства и графики.
- •25. Числовые последовательности. Предел числовой последовательности.
- •Ограниченные и неограниченные последовательности.
- •26. Число е. Натуральные логарифмы.
- •Связь натурального и десятичного логарифмов.
- •2 7. Предел функции в точке, односторонние пределы. Геометрическая иллюстрация определений.
- •28. Предел функции в бесконечности. Геометрическая иллюстрация.
- •29. Бесконечно малые функции и их свойства. Бесконечно большие функции. Связь между бесконечно малыми и бесконечно большими функциями.
- •Бесконечно большие функции и их связь с бесконечно малыми.
- •30. Основные теоремы о пределах.
- •Теорема доказана.
- •31. Первый и второй замечательные пределы.
- •32. Сравнение бесконечно малых функций.
- •33. Непрерывность функций в точке и на отрезке. Точки разрыва функции и их классификация.
- •Точки разрыва и их классификация.
- •Непрерывность функции на интервале и на отрезке.
- •34. Свойства функций непрерывных в точке.
- •Непрерывность некоторых элементарных функций.
- •35. Свойства функций непрерывных на отрезке (теоремы Вейерштрасса, Коши, о промежуточных значениях) и их геометрических смысл.
- •III. Дифференциальное исчисление функции одной переменной.
- •36. Задачи, приводящие к определению производной.
- •37. Производная функции, ее геометрический и механический смыслы.
- •38. Односторонние производные. Производная сложной и обратной функции. Односторонние производные функции в точке.
- •Производная сложной функции.
- •Производная обратных функций.
- •Основные правила дифференцирования.
- •Производные основных элементарных функций.
- •Дифференциал функции.
- •42. Свойства дифференциала и инвариантность его формулы. Применение дифференциала к приближенным вычислениям.
- •Применение дифференциала к приближенным вычислениям.
- •43. Производные и дифференциалы высших порядков. Производные и дифференциалы высших порядков.
- •Общие правила нахождения высших производных.
- •44. Основные теоремы дифференциального исчисления: Ролля (с доказательством), Коши (без доказательства), Лагранжа (с доказательством). Теорема Ролля
- •Теорема Коши.
- •Теорема Лагранжа.
- •45. Правило Лопиталя (доказательство для случая неопределенности ). Правило Лопиталя.
- •Точки экстремума.
- •Асимптоты.
- •Вертикальные асимптоты.
- •Наклонные асимптоты.
Теорема Коши.
Если функции f(x) и g(x) непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и g(x) 0 на интервале (a, b), то существует по крайней мере одна точка , a < < b, такая, что
.
Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке .
Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг на друга. Однако, это представление ошибочно, т.к. точка для каждой из функции в общем случае различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой для обеих функций, но это - очень редкое совпадение, а не правило, поэтому не может быть использовано для доказательства теоремы.
Следует отметить, что рассмотренная ниже теорема Лагранжа является частным случаем (при g(x) = x) теоремы Коши. Доказанная нами теорема Коши очень широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций.
Теорема Лагранжа.
Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом интервале найдется по крайней мере одна точка
a
<
< b,
такая, что
.
Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.
Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа.
Отношение
равно угловому коэффициенту секущей
АВ.
у
В
А
0 а b x
Если функция f(x) удовлетворяет условиям теоремы, то на интервале (а, b) существует точка такая, что в соответствующей точке кривой y = f(x) касательная параллельна секущей, соединяющей точки А и В. Таких точек может быть и несколько, но одна существует точно.
Доказательство. Рассмотрим некоторую вспомогательную функцию
F(x) = f(x) – yсек АВ
Уравнение секущей АВ можно записать в виде:
Функция F(x) удовлетворяет теореме Ролля. Действительно, она непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b). По теореме Ролля существует хотя бы одна точка , a < < b, такая что F() = 0.
Т.к.
,
то
,
следовательно
Теорема доказана.
Определение.
Выражение
называется формулой
Лагранжа или
формулой
конечных приращений.
В дальнейшем эта формула будет очень часто применяться для доказательства самых разных теорем.
Иногда формулу Лагранжа записывают в несколько другом виде:
,
где 0 < < 1, x = b – a, y = f(b) – f(a).
45. Правило Лопиталя (доказательство для случая неопределенности ). Правило Лопиталя.
К разряду неопределенностей принято относить следующие соотношения:
Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при ха равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.
Доказательство. Применив формулу Коши, получим:
где - точка, находящаяся между а и х. Учитывая, что f(a) = g(a) = 0:
Пусть
при ха
отношение
стремится к некоторому пределу. Т.к.
точка
лежит между точками а и х, то при ха
получим а,
а следовательно и отношение
стремится к тому же пределу. Таким
образом, можно записать:
.
Теорема доказана.
Пример:
Найти предел
.
Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.
f(x) = 2x + ; g(x) = ex;
;
Пример:
Найти предел
.
;
;
.
Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.
Пример:
Найти
предел
.
;
;
;
;
;
;
Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).
Пример:
Найти предел
.
;
;
-
опять получилась неопределенность.
Применим правило Лопиталя еще раз.
;
;
-
применяем правило Лопиталя еще раз.
;
;
;
Неопределенности
вида
можно раскрыть с помощью логарифмирования.
Такие неопределенности встречаются
при нахождении пределов функций вида
,
f(x)>0
вблизи точки а при ха.
Для нахождения предела такой функции
достаточно найти предел функции lny
= g(x)lnf(x).
Пример:
Найти предел
.
Здесь y = xx, lny = xlnx.
Тогда
.
Следовательно
Пример:
Найти предел
.
;
-
получили неопределенность. Применяем
правило Лопиталя еще раз.
;
;
46. Применение дифференциального исчисления к исследованию функций и построению графиков (возрастание, убывание, экстремум, выпуклость, вогнутость графика функции, точки перегиба, асимптоты графика функции).
Исследование функций с помощью производной.
Возрастание и убывание функций.
Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f(x) 0.
2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].
Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f(x)0 на этом отрезке. Если f(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].
Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).
Доказанную выше теорему можно проиллюстрировать геометрически:
y
y
x x