
- •I. Элементы линейной и векторной алгебры, аналитической геометрии.
- •1. Определители второго и третьего порядков. Основные свойства. Минор и алгебраическое дополнение. Понятие определителя n-ого порядка и его вычисление.
- •Свойства определителей.
- •2. Матрицы, действия над матрицами. Обратная матрица. Ранг матрицы.
- •Основные действия над матрицами.
- •Обратная матрица.
- •Свойства обратных матриц.
- •3. Системы линейных уравнений. Теорема Кронекера-Капелли (формулировка). Правило Крамера.
- •Элементарные преобразования систем.
- •Теорема Кронекера – Капелли. (условие совместности системы)
- •Метод Крамера.
- •4. Решение систем линейных уравнений матричным методом.
- •5. Метод Гаусса. Однородные системы линейных уравнений и их решение. Метод Гаусса.
- •Однородные системы линейных уравнений
- •6. Векторы. Линейные операции над векторами и их свойства.
- •Свойства векторов.
- •7. Проекция вектора на ось. Свойства проекций.
- •Некоторые свойства проекций
- •8. Линейная зависимость векторов. Разложение вектора по базису. Линейная зависимость векторов.
- •9. Декартова система координат. Координаты вектора. Система координат.
- •Декартова система координат.
- •Линейные операции над векторами в координатах.
- •10. Направляющие косинусы, длина вектора.
- •11. Деление отрезка в данном отношении.
- •12. Скалярное произведение векторов, его свойства, вычисление и применение.
- •13. Векторное произведение векторов, его свойства, вычисление и применение.
- •Свойства векторного произведения векторов:
- •14. Смешенное произведение векторов, его свойства, вычисление и применение.
- •Свойства смешанного произведения:
- •15. Прямая линия на плоскости. Различные способы задания. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой на плоскости. Уравнение линии на плоскости.
- •Уравнение прямой на плоскости.
- •Уравнение прямой по точке и вектору нормали.
- •Уравнение прямой по точке и направляющему вектору.
- •Параметрическое уравнение прямой
- •Уравнение прямой, проходящей через две точки.
- •2. Условие перпендикулярности.
- •16. Плоскость в пространстве. Различные способы задания. Взаимное расположение плоскостей. Расстояние от точки до плоскости. Общее уравнение плоскости.
- •Уравнение плоскости по точке и вектору нормали.
- •Уравнение плоскости в отрезках.
- •Уравнение плоскости, проходящей через три точки.
- •17. Прямая в пространстве. Различные способы задания. Взаимное расположение прямых в пространстве. Уравнение прямой в пространстве по точке и направляющему вектору.
- •Уравнение прямой в пространстве, проходящей через две точки.
- •Общие уравнения прямой в пространстве.
- •Условия параллельности и перпендикулярности прямых в пространстве.
- •Угол между прямыми в пространстве.
- •18. Взаимное расположение прямой и плоскости в пространстве. Угол между прямой и плоскостью.
- •Условия параллельности и перпендикулярности прямой и плоскости в пространстве.
- •Эллипс.
- •Гипербола.
- •Парабола.
- •20. Поверхности второго порядка. Цилиндрические поверхности. Исследование поверхностей методом сечений. Поверхности второго порядка.
- •С фера:
- •К онус второго порядка:
- •Двуполостный гиперболоид:
- •Эллиптический параболоид:
- •Г иперболический параболоид:
- •II. Введение в математический анализ
- •21. Множество действительных чисел.
- •Операции над множествами.
- •22. Функция, область ее определения и способы задания. Сложные и обратные функции.
- •Способы задания функций
- •Сложная функция.
- •Обратная функция.
- •23. Свойства (четность, периодичность, монотонность, ограниченность) и графики функций.
- •24. Гиперболические функции, их свойства и графики.
- •25. Числовые последовательности. Предел числовой последовательности.
- •Ограниченные и неограниченные последовательности.
- •26. Число е. Натуральные логарифмы.
- •Связь натурального и десятичного логарифмов.
- •2 7. Предел функции в точке, односторонние пределы. Геометрическая иллюстрация определений.
- •28. Предел функции в бесконечности. Геометрическая иллюстрация.
- •29. Бесконечно малые функции и их свойства. Бесконечно большие функции. Связь между бесконечно малыми и бесконечно большими функциями.
- •Бесконечно большие функции и их связь с бесконечно малыми.
- •30. Основные теоремы о пределах.
- •Теорема доказана.
- •31. Первый и второй замечательные пределы.
- •32. Сравнение бесконечно малых функций.
- •33. Непрерывность функций в точке и на отрезке. Точки разрыва функции и их классификация.
- •Точки разрыва и их классификация.
- •Непрерывность функции на интервале и на отрезке.
- •34. Свойства функций непрерывных в точке.
- •Непрерывность некоторых элементарных функций.
- •35. Свойства функций непрерывных на отрезке (теоремы Вейерштрасса, Коши, о промежуточных значениях) и их геометрических смысл.
- •III. Дифференциальное исчисление функции одной переменной.
- •36. Задачи, приводящие к определению производной.
- •37. Производная функции, ее геометрический и механический смыслы.
- •38. Односторонние производные. Производная сложной и обратной функции. Односторонние производные функции в точке.
- •Производная сложной функции.
- •Производная обратных функций.
- •Основные правила дифференцирования.
- •Производные основных элементарных функций.
- •Дифференциал функции.
- •42. Свойства дифференциала и инвариантность его формулы. Применение дифференциала к приближенным вычислениям.
- •Применение дифференциала к приближенным вычислениям.
- •43. Производные и дифференциалы высших порядков. Производные и дифференциалы высших порядков.
- •Общие правила нахождения высших производных.
- •44. Основные теоремы дифференциального исчисления: Ролля (с доказательством), Коши (без доказательства), Лагранжа (с доказательством). Теорема Ролля
- •Теорема Коши.
- •Теорема Лагранжа.
- •45. Правило Лопиталя (доказательство для случая неопределенности ). Правило Лопиталя.
- •Точки экстремума.
- •Асимптоты.
- •Вертикальные асимптоты.
- •Наклонные асимптоты.
Непрерывность функции на интервале и на отрезке.
Определение. Функция f(x) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке интервала (отрезка).
При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.
34. Свойства функций непрерывных в точке.
Свойства непрерывных функций.
1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.
2)
Частное двух непрерывных функций
–
есть непрерывная функция при условии,
что g(x)
не равна нулю в точке х0.
3) Суперпозиция непрерывных функций – есть непрерывная функция.
Это свойство может быть записано следующим образом:
Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.
Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.
Непрерывность некоторых элементарных функций.
1) Функция f(x) = C, C = const – непрерывная функция на всей области определения.
2)
Рациональная функция
непрерывна для всех значений х, кроме
тех, при которых знаменатель обращается
в ноль. Таким образом, функция этого
вида непрерывна на всей области
определения.
3) Тригонометрические функции sin и cos непрерывны на своей области определения.
Докажем свойство 3 для функции y = sinx.
Запишем приращение функции y = sin(x + x) – sinx, или после преобразования:
Действительно,
имеется предел произведения двух функций
и
.
При этом функция косинус – ограниченная
функция при х0
,
а т.к.
предел
функции синус
,
то она является бесконечно малой при
х0.
Таким образом, имеется произведение ограниченной функции на бесконечно малую, следовательно это произведение, т.е. функция у – бесконечно малая. В соответствии с рассмотренными выше определениями, функция у = sinx – непрерывная функция для любого значения х = х0 из области определения, т.к. ее приращение в этой точке – бесконечно малая величина.
35. Свойства функций непрерывных на отрезке (теоремы Вейерштрасса, Коши, о промежуточных значениях) и их геометрических смысл.
Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M f(x) M.
Доказательство этого свойства основано на том, что функция, непрерывная в точке х0, ограничена в некоторой ее окрестности, а если разбивать отрезок [a, b] на бесконечное количество отрезков, которые “стягиваются” к точке х0, то образуется некоторая окрестность точки х0.
Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.
Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причем
m f(x) M
Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).
Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.
Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.
Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.
Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.
Т.е. если sign(f(a)) sign(f(b)), то х0: f(x0) = 0.
Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если для любого >0 существует >0 такое, что для любых точек х1[a,b] и x2[a,b] таких, что
х2 – х1<
верно неравенство f(x2) – f(x1) <
Отличие равномерной непрерывности от “обычной” в том, что для любого существует свое , не зависящее от х, а при “обычной” непрерывности зависит от и х.
Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.
(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)
Пример.
Функция непрерывна на интервале (0, а), но не является на нем равномерно непрерывной, т.к. существует такое число >0 такое, что существуют значения х1 и х2 такие, чтоf(x1) – f(x2)>, - любое число при условии, что х1 и х2 близки к нулю.
Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна.
Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.
в
точке х = -1 функция непрерывна в
точке х = 1 точка разрыва 1 – го рода
3
2
-4 -1 0 1 х
Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.
в точке х = 0 функция непрерывна в точке х = 1 точка разрыва 1 – го рода
у
2
1
- -/2 0 1 x